Fair Allocation of Indivisible Items with Conflict Graphs

We consider the fair allocation of indivisible items to several agents and add a graph theoretical perspective to this classical problem. Namely, we introduce an incompatibility relation between pairs of items described in terms of a conflict graph. Every subset of items assigned to one agent has to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algorithmica 2023-05, Vol.85 (5), p.1459-1489
Hauptverfasser: Chiarelli, Nina, Krnc, Matjaž, Milanič, Martin, Pferschy, Ulrich, Pivač, Nevena, Schauer, Joachim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1489
container_issue 5
container_start_page 1459
container_title Algorithmica
container_volume 85
creator Chiarelli, Nina
Krnc, Matjaž
Milanič, Martin
Pferschy, Ulrich
Pivač, Nevena
Schauer, Joachim
description We consider the fair allocation of indivisible items to several agents and add a graph theoretical perspective to this classical problem. Namely, we introduce an incompatibility relation between pairs of items described in terms of a conflict graph. Every subset of items assigned to one agent has to form an independent set in this graph. Thus, the allocation of items to the agents corresponds to a partial coloring of the conflict graph. Every agent has its own profit valuation for every item. Aiming at a fair allocation, our goal is the maximization of the lowest total profit of items allocated to any one of the agents. The resulting optimization problem contains, as special cases, both Partition and Independent Set . In our contribution we derive complexity and algorithmic results depending on the properties of the given graph. We show that the problem is strongly NP-hard for bipartite graphs and their line graphs, and solvable in pseudo-polynomial time for the classes of chordal graphs, cocomparability graphs, biconvex bipartite graphs, and graphs of bounded treewidth. Each of the pseudo-polynomial algorithms can also be turned into a fully polynomial approximation scheme (FPTAS).
doi_str_mv 10.1007/s00453-022-01079-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2805487502</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2805487502</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-bc5580f585a87eae50ef4a9f1aa76c19629bd3cc23c82378193a5bd2f56f9ef83</originalsourceid><addsrcrecordid>eNp9kMFKAzEQhoMoWKsv4CngOTpJNpvkWIqthYIXPYdsmtiU7aYmW8W3d-sK3jwNA9__D_MhdEvhngLIhwJQCU6AMQIUpCbqDE1oxYdVVPQcTYBKRaqaykt0VcoOgDKp6wnSCxsznrVtcraPqcMp4FW3iR-xxKb1eNX7fcGfsd_ieepCG12Pl9ketuUaXQTbFn_zO6fodfH4Mn8i6-flaj5bE8dr3pPGCaEgCCWskt56AT5UVgdqrawd1TXTzYY7x7hTjEtFNbei2bAg6qB9UHyK7sbeQ07vR196s0vH3A0nDVPDd0oKYAPFRsrlVEr2wRxy3Nv8ZSiYkyIzKjKDIvOjyJyq-RgqA9y9-fxX_U_qGwbyaEM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2805487502</pqid></control><display><type>article</type><title>Fair Allocation of Indivisible Items with Conflict Graphs</title><source>SpringerLink Journals - AutoHoldings</source><creator>Chiarelli, Nina ; Krnc, Matjaž ; Milanič, Martin ; Pferschy, Ulrich ; Pivač, Nevena ; Schauer, Joachim</creator><creatorcontrib>Chiarelli, Nina ; Krnc, Matjaž ; Milanič, Martin ; Pferschy, Ulrich ; Pivač, Nevena ; Schauer, Joachim</creatorcontrib><description>We consider the fair allocation of indivisible items to several agents and add a graph theoretical perspective to this classical problem. Namely, we introduce an incompatibility relation between pairs of items described in terms of a conflict graph. Every subset of items assigned to one agent has to form an independent set in this graph. Thus, the allocation of items to the agents corresponds to a partial coloring of the conflict graph. Every agent has its own profit valuation for every item. Aiming at a fair allocation, our goal is the maximization of the lowest total profit of items allocated to any one of the agents. The resulting optimization problem contains, as special cases, both Partition and Independent Set . In our contribution we derive complexity and algorithmic results depending on the properties of the given graph. We show that the problem is strongly NP-hard for bipartite graphs and their line graphs, and solvable in pseudo-polynomial time for the classes of chordal graphs, cocomparability graphs, biconvex bipartite graphs, and graphs of bounded treewidth. Each of the pseudo-polynomial algorithms can also be turned into a fully polynomial approximation scheme (FPTAS).</description><identifier>ISSN: 0178-4617</identifier><identifier>EISSN: 1432-0541</identifier><identifier>DOI: 10.1007/s00453-022-01079-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithm Analysis and Problem Complexity ; Algorithms ; Computer Science ; Computer Systems Organization and Communication Networks ; Data Structures and Information Theory ; Graphs ; Incompatibility ; Mathematics of Computing ; Optimization ; Polynomials ; Theory of Computation</subject><ispartof>Algorithmica, 2023-05, Vol.85 (5), p.1459-1489</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-bc5580f585a87eae50ef4a9f1aa76c19629bd3cc23c82378193a5bd2f56f9ef83</citedby><cites>FETCH-LOGICAL-c363t-bc5580f585a87eae50ef4a9f1aa76c19629bd3cc23c82378193a5bd2f56f9ef83</cites><orcidid>0000-0002-4960-8901 ; 0000-0002-8222-8097 ; 0000-0002-2268-0612 ; 0000-0001-8881-1497 ; 0000-0002-8169-0925</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00453-022-01079-8$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00453-022-01079-8$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Chiarelli, Nina</creatorcontrib><creatorcontrib>Krnc, Matjaž</creatorcontrib><creatorcontrib>Milanič, Martin</creatorcontrib><creatorcontrib>Pferschy, Ulrich</creatorcontrib><creatorcontrib>Pivač, Nevena</creatorcontrib><creatorcontrib>Schauer, Joachim</creatorcontrib><title>Fair Allocation of Indivisible Items with Conflict Graphs</title><title>Algorithmica</title><addtitle>Algorithmica</addtitle><description>We consider the fair allocation of indivisible items to several agents and add a graph theoretical perspective to this classical problem. Namely, we introduce an incompatibility relation between pairs of items described in terms of a conflict graph. Every subset of items assigned to one agent has to form an independent set in this graph. Thus, the allocation of items to the agents corresponds to a partial coloring of the conflict graph. Every agent has its own profit valuation for every item. Aiming at a fair allocation, our goal is the maximization of the lowest total profit of items allocated to any one of the agents. The resulting optimization problem contains, as special cases, both Partition and Independent Set . In our contribution we derive complexity and algorithmic results depending on the properties of the given graph. We show that the problem is strongly NP-hard for bipartite graphs and their line graphs, and solvable in pseudo-polynomial time for the classes of chordal graphs, cocomparability graphs, biconvex bipartite graphs, and graphs of bounded treewidth. Each of the pseudo-polynomial algorithms can also be turned into a fully polynomial approximation scheme (FPTAS).</description><subject>Algorithm Analysis and Problem Complexity</subject><subject>Algorithms</subject><subject>Computer Science</subject><subject>Computer Systems Organization and Communication Networks</subject><subject>Data Structures and Information Theory</subject><subject>Graphs</subject><subject>Incompatibility</subject><subject>Mathematics of Computing</subject><subject>Optimization</subject><subject>Polynomials</subject><subject>Theory of Computation</subject><issn>0178-4617</issn><issn>1432-0541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kMFKAzEQhoMoWKsv4CngOTpJNpvkWIqthYIXPYdsmtiU7aYmW8W3d-sK3jwNA9__D_MhdEvhngLIhwJQCU6AMQIUpCbqDE1oxYdVVPQcTYBKRaqaykt0VcoOgDKp6wnSCxsznrVtcraPqcMp4FW3iR-xxKb1eNX7fcGfsd_ieepCG12Pl9ketuUaXQTbFn_zO6fodfH4Mn8i6-flaj5bE8dr3pPGCaEgCCWskt56AT5UVgdqrawd1TXTzYY7x7hTjEtFNbei2bAg6qB9UHyK7sbeQ07vR196s0vH3A0nDVPDd0oKYAPFRsrlVEr2wRxy3Nv8ZSiYkyIzKjKDIvOjyJyq-RgqA9y9-fxX_U_qGwbyaEM</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Chiarelli, Nina</creator><creator>Krnc, Matjaž</creator><creator>Milanič, Martin</creator><creator>Pferschy, Ulrich</creator><creator>Pivač, Nevena</creator><creator>Schauer, Joachim</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4960-8901</orcidid><orcidid>https://orcid.org/0000-0002-8222-8097</orcidid><orcidid>https://orcid.org/0000-0002-2268-0612</orcidid><orcidid>https://orcid.org/0000-0001-8881-1497</orcidid><orcidid>https://orcid.org/0000-0002-8169-0925</orcidid></search><sort><creationdate>20230501</creationdate><title>Fair Allocation of Indivisible Items with Conflict Graphs</title><author>Chiarelli, Nina ; Krnc, Matjaž ; Milanič, Martin ; Pferschy, Ulrich ; Pivač, Nevena ; Schauer, Joachim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-bc5580f585a87eae50ef4a9f1aa76c19629bd3cc23c82378193a5bd2f56f9ef83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithm Analysis and Problem Complexity</topic><topic>Algorithms</topic><topic>Computer Science</topic><topic>Computer Systems Organization and Communication Networks</topic><topic>Data Structures and Information Theory</topic><topic>Graphs</topic><topic>Incompatibility</topic><topic>Mathematics of Computing</topic><topic>Optimization</topic><topic>Polynomials</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chiarelli, Nina</creatorcontrib><creatorcontrib>Krnc, Matjaž</creatorcontrib><creatorcontrib>Milanič, Martin</creatorcontrib><creatorcontrib>Pferschy, Ulrich</creatorcontrib><creatorcontrib>Pivač, Nevena</creatorcontrib><creatorcontrib>Schauer, Joachim</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Algorithmica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chiarelli, Nina</au><au>Krnc, Matjaž</au><au>Milanič, Martin</au><au>Pferschy, Ulrich</au><au>Pivač, Nevena</au><au>Schauer, Joachim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fair Allocation of Indivisible Items with Conflict Graphs</atitle><jtitle>Algorithmica</jtitle><stitle>Algorithmica</stitle><date>2023-05-01</date><risdate>2023</risdate><volume>85</volume><issue>5</issue><spage>1459</spage><epage>1489</epage><pages>1459-1489</pages><issn>0178-4617</issn><eissn>1432-0541</eissn><abstract>We consider the fair allocation of indivisible items to several agents and add a graph theoretical perspective to this classical problem. Namely, we introduce an incompatibility relation between pairs of items described in terms of a conflict graph. Every subset of items assigned to one agent has to form an independent set in this graph. Thus, the allocation of items to the agents corresponds to a partial coloring of the conflict graph. Every agent has its own profit valuation for every item. Aiming at a fair allocation, our goal is the maximization of the lowest total profit of items allocated to any one of the agents. The resulting optimization problem contains, as special cases, both Partition and Independent Set . In our contribution we derive complexity and algorithmic results depending on the properties of the given graph. We show that the problem is strongly NP-hard for bipartite graphs and their line graphs, and solvable in pseudo-polynomial time for the classes of chordal graphs, cocomparability graphs, biconvex bipartite graphs, and graphs of bounded treewidth. Each of the pseudo-polynomial algorithms can also be turned into a fully polynomial approximation scheme (FPTAS).</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00453-022-01079-8</doi><tpages>31</tpages><orcidid>https://orcid.org/0000-0002-4960-8901</orcidid><orcidid>https://orcid.org/0000-0002-8222-8097</orcidid><orcidid>https://orcid.org/0000-0002-2268-0612</orcidid><orcidid>https://orcid.org/0000-0001-8881-1497</orcidid><orcidid>https://orcid.org/0000-0002-8169-0925</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0178-4617
ispartof Algorithmica, 2023-05, Vol.85 (5), p.1459-1489
issn 0178-4617
1432-0541
language eng
recordid cdi_proquest_journals_2805487502
source SpringerLink Journals - AutoHoldings
subjects Algorithm Analysis and Problem Complexity
Algorithms
Computer Science
Computer Systems Organization and Communication Networks
Data Structures and Information Theory
Graphs
Incompatibility
Mathematics of Computing
Optimization
Polynomials
Theory of Computation
title Fair Allocation of Indivisible Items with Conflict Graphs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T22%3A01%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fair%20Allocation%20of%20Indivisible%20Items%20with%20Conflict%20Graphs&rft.jtitle=Algorithmica&rft.au=Chiarelli,%20Nina&rft.date=2023-05-01&rft.volume=85&rft.issue=5&rft.spage=1459&rft.epage=1489&rft.pages=1459-1489&rft.issn=0178-4617&rft.eissn=1432-0541&rft_id=info:doi/10.1007/s00453-022-01079-8&rft_dat=%3Cproquest_cross%3E2805487502%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2805487502&rft_id=info:pmid/&rfr_iscdi=true