Fair Allocation of Indivisible Items with Conflict Graphs
We consider the fair allocation of indivisible items to several agents and add a graph theoretical perspective to this classical problem. Namely, we introduce an incompatibility relation between pairs of items described in terms of a conflict graph. Every subset of items assigned to one agent has to...
Gespeichert in:
Veröffentlicht in: | Algorithmica 2023-05, Vol.85 (5), p.1459-1489 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1489 |
---|---|
container_issue | 5 |
container_start_page | 1459 |
container_title | Algorithmica |
container_volume | 85 |
creator | Chiarelli, Nina Krnc, Matjaž Milanič, Martin Pferschy, Ulrich Pivač, Nevena Schauer, Joachim |
description | We consider the fair allocation of indivisible items to several agents and add a graph theoretical perspective to this classical problem. Namely, we introduce an incompatibility relation between pairs of items described in terms of a conflict graph. Every subset of items assigned to one agent has to form an independent set in this graph. Thus, the allocation of items to the agents corresponds to a partial coloring of the conflict graph. Every agent has its own profit valuation for every item. Aiming at a fair allocation, our goal is the maximization of the lowest total profit of items allocated to any one of the agents. The resulting optimization problem contains, as special cases, both
Partition
and
Independent Set
. In our contribution we derive complexity and algorithmic results depending on the properties of the given graph. We show that the problem is strongly NP-hard for bipartite graphs and their line graphs, and solvable in pseudo-polynomial time for the classes of chordal graphs, cocomparability graphs, biconvex bipartite graphs, and graphs of bounded treewidth. Each of the pseudo-polynomial algorithms can also be turned into a fully polynomial approximation scheme (FPTAS). |
doi_str_mv | 10.1007/s00453-022-01079-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2805487502</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2805487502</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-bc5580f585a87eae50ef4a9f1aa76c19629bd3cc23c82378193a5bd2f56f9ef83</originalsourceid><addsrcrecordid>eNp9kMFKAzEQhoMoWKsv4CngOTpJNpvkWIqthYIXPYdsmtiU7aYmW8W3d-sK3jwNA9__D_MhdEvhngLIhwJQCU6AMQIUpCbqDE1oxYdVVPQcTYBKRaqaykt0VcoOgDKp6wnSCxsznrVtcraPqcMp4FW3iR-xxKb1eNX7fcGfsd_ieepCG12Pl9ketuUaXQTbFn_zO6fodfH4Mn8i6-flaj5bE8dr3pPGCaEgCCWskt56AT5UVgdqrawd1TXTzYY7x7hTjEtFNbei2bAg6qB9UHyK7sbeQ07vR196s0vH3A0nDVPDd0oKYAPFRsrlVEr2wRxy3Nv8ZSiYkyIzKjKDIvOjyJyq-RgqA9y9-fxX_U_qGwbyaEM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2805487502</pqid></control><display><type>article</type><title>Fair Allocation of Indivisible Items with Conflict Graphs</title><source>SpringerLink Journals - AutoHoldings</source><creator>Chiarelli, Nina ; Krnc, Matjaž ; Milanič, Martin ; Pferschy, Ulrich ; Pivač, Nevena ; Schauer, Joachim</creator><creatorcontrib>Chiarelli, Nina ; Krnc, Matjaž ; Milanič, Martin ; Pferschy, Ulrich ; Pivač, Nevena ; Schauer, Joachim</creatorcontrib><description>We consider the fair allocation of indivisible items to several agents and add a graph theoretical perspective to this classical problem. Namely, we introduce an incompatibility relation between pairs of items described in terms of a conflict graph. Every subset of items assigned to one agent has to form an independent set in this graph. Thus, the allocation of items to the agents corresponds to a partial coloring of the conflict graph. Every agent has its own profit valuation for every item. Aiming at a fair allocation, our goal is the maximization of the lowest total profit of items allocated to any one of the agents. The resulting optimization problem contains, as special cases, both
Partition
and
Independent Set
. In our contribution we derive complexity and algorithmic results depending on the properties of the given graph. We show that the problem is strongly NP-hard for bipartite graphs and their line graphs, and solvable in pseudo-polynomial time for the classes of chordal graphs, cocomparability graphs, biconvex bipartite graphs, and graphs of bounded treewidth. Each of the pseudo-polynomial algorithms can also be turned into a fully polynomial approximation scheme (FPTAS).</description><identifier>ISSN: 0178-4617</identifier><identifier>EISSN: 1432-0541</identifier><identifier>DOI: 10.1007/s00453-022-01079-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithm Analysis and Problem Complexity ; Algorithms ; Computer Science ; Computer Systems Organization and Communication Networks ; Data Structures and Information Theory ; Graphs ; Incompatibility ; Mathematics of Computing ; Optimization ; Polynomials ; Theory of Computation</subject><ispartof>Algorithmica, 2023-05, Vol.85 (5), p.1459-1489</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-bc5580f585a87eae50ef4a9f1aa76c19629bd3cc23c82378193a5bd2f56f9ef83</citedby><cites>FETCH-LOGICAL-c363t-bc5580f585a87eae50ef4a9f1aa76c19629bd3cc23c82378193a5bd2f56f9ef83</cites><orcidid>0000-0002-4960-8901 ; 0000-0002-8222-8097 ; 0000-0002-2268-0612 ; 0000-0001-8881-1497 ; 0000-0002-8169-0925</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00453-022-01079-8$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00453-022-01079-8$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Chiarelli, Nina</creatorcontrib><creatorcontrib>Krnc, Matjaž</creatorcontrib><creatorcontrib>Milanič, Martin</creatorcontrib><creatorcontrib>Pferschy, Ulrich</creatorcontrib><creatorcontrib>Pivač, Nevena</creatorcontrib><creatorcontrib>Schauer, Joachim</creatorcontrib><title>Fair Allocation of Indivisible Items with Conflict Graphs</title><title>Algorithmica</title><addtitle>Algorithmica</addtitle><description>We consider the fair allocation of indivisible items to several agents and add a graph theoretical perspective to this classical problem. Namely, we introduce an incompatibility relation between pairs of items described in terms of a conflict graph. Every subset of items assigned to one agent has to form an independent set in this graph. Thus, the allocation of items to the agents corresponds to a partial coloring of the conflict graph. Every agent has its own profit valuation for every item. Aiming at a fair allocation, our goal is the maximization of the lowest total profit of items allocated to any one of the agents. The resulting optimization problem contains, as special cases, both
Partition
and
Independent Set
. In our contribution we derive complexity and algorithmic results depending on the properties of the given graph. We show that the problem is strongly NP-hard for bipartite graphs and their line graphs, and solvable in pseudo-polynomial time for the classes of chordal graphs, cocomparability graphs, biconvex bipartite graphs, and graphs of bounded treewidth. Each of the pseudo-polynomial algorithms can also be turned into a fully polynomial approximation scheme (FPTAS).</description><subject>Algorithm Analysis and Problem Complexity</subject><subject>Algorithms</subject><subject>Computer Science</subject><subject>Computer Systems Organization and Communication Networks</subject><subject>Data Structures and Information Theory</subject><subject>Graphs</subject><subject>Incompatibility</subject><subject>Mathematics of Computing</subject><subject>Optimization</subject><subject>Polynomials</subject><subject>Theory of Computation</subject><issn>0178-4617</issn><issn>1432-0541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kMFKAzEQhoMoWKsv4CngOTpJNpvkWIqthYIXPYdsmtiU7aYmW8W3d-sK3jwNA9__D_MhdEvhngLIhwJQCU6AMQIUpCbqDE1oxYdVVPQcTYBKRaqaykt0VcoOgDKp6wnSCxsznrVtcraPqcMp4FW3iR-xxKb1eNX7fcGfsd_ieepCG12Pl9ketuUaXQTbFn_zO6fodfH4Mn8i6-flaj5bE8dr3pPGCaEgCCWskt56AT5UVgdqrawd1TXTzYY7x7hTjEtFNbei2bAg6qB9UHyK7sbeQ07vR196s0vH3A0nDVPDd0oKYAPFRsrlVEr2wRxy3Nv8ZSiYkyIzKjKDIvOjyJyq-RgqA9y9-fxX_U_qGwbyaEM</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Chiarelli, Nina</creator><creator>Krnc, Matjaž</creator><creator>Milanič, Martin</creator><creator>Pferschy, Ulrich</creator><creator>Pivač, Nevena</creator><creator>Schauer, Joachim</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4960-8901</orcidid><orcidid>https://orcid.org/0000-0002-8222-8097</orcidid><orcidid>https://orcid.org/0000-0002-2268-0612</orcidid><orcidid>https://orcid.org/0000-0001-8881-1497</orcidid><orcidid>https://orcid.org/0000-0002-8169-0925</orcidid></search><sort><creationdate>20230501</creationdate><title>Fair Allocation of Indivisible Items with Conflict Graphs</title><author>Chiarelli, Nina ; Krnc, Matjaž ; Milanič, Martin ; Pferschy, Ulrich ; Pivač, Nevena ; Schauer, Joachim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-bc5580f585a87eae50ef4a9f1aa76c19629bd3cc23c82378193a5bd2f56f9ef83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithm Analysis and Problem Complexity</topic><topic>Algorithms</topic><topic>Computer Science</topic><topic>Computer Systems Organization and Communication Networks</topic><topic>Data Structures and Information Theory</topic><topic>Graphs</topic><topic>Incompatibility</topic><topic>Mathematics of Computing</topic><topic>Optimization</topic><topic>Polynomials</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chiarelli, Nina</creatorcontrib><creatorcontrib>Krnc, Matjaž</creatorcontrib><creatorcontrib>Milanič, Martin</creatorcontrib><creatorcontrib>Pferschy, Ulrich</creatorcontrib><creatorcontrib>Pivač, Nevena</creatorcontrib><creatorcontrib>Schauer, Joachim</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Algorithmica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chiarelli, Nina</au><au>Krnc, Matjaž</au><au>Milanič, Martin</au><au>Pferschy, Ulrich</au><au>Pivač, Nevena</au><au>Schauer, Joachim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fair Allocation of Indivisible Items with Conflict Graphs</atitle><jtitle>Algorithmica</jtitle><stitle>Algorithmica</stitle><date>2023-05-01</date><risdate>2023</risdate><volume>85</volume><issue>5</issue><spage>1459</spage><epage>1489</epage><pages>1459-1489</pages><issn>0178-4617</issn><eissn>1432-0541</eissn><abstract>We consider the fair allocation of indivisible items to several agents and add a graph theoretical perspective to this classical problem. Namely, we introduce an incompatibility relation between pairs of items described in terms of a conflict graph. Every subset of items assigned to one agent has to form an independent set in this graph. Thus, the allocation of items to the agents corresponds to a partial coloring of the conflict graph. Every agent has its own profit valuation for every item. Aiming at a fair allocation, our goal is the maximization of the lowest total profit of items allocated to any one of the agents. The resulting optimization problem contains, as special cases, both
Partition
and
Independent Set
. In our contribution we derive complexity and algorithmic results depending on the properties of the given graph. We show that the problem is strongly NP-hard for bipartite graphs and their line graphs, and solvable in pseudo-polynomial time for the classes of chordal graphs, cocomparability graphs, biconvex bipartite graphs, and graphs of bounded treewidth. Each of the pseudo-polynomial algorithms can also be turned into a fully polynomial approximation scheme (FPTAS).</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00453-022-01079-8</doi><tpages>31</tpages><orcidid>https://orcid.org/0000-0002-4960-8901</orcidid><orcidid>https://orcid.org/0000-0002-8222-8097</orcidid><orcidid>https://orcid.org/0000-0002-2268-0612</orcidid><orcidid>https://orcid.org/0000-0001-8881-1497</orcidid><orcidid>https://orcid.org/0000-0002-8169-0925</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0178-4617 |
ispartof | Algorithmica, 2023-05, Vol.85 (5), p.1459-1489 |
issn | 0178-4617 1432-0541 |
language | eng |
recordid | cdi_proquest_journals_2805487502 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algorithm Analysis and Problem Complexity Algorithms Computer Science Computer Systems Organization and Communication Networks Data Structures and Information Theory Graphs Incompatibility Mathematics of Computing Optimization Polynomials Theory of Computation |
title | Fair Allocation of Indivisible Items with Conflict Graphs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T22%3A01%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fair%20Allocation%20of%20Indivisible%20Items%20with%20Conflict%20Graphs&rft.jtitle=Algorithmica&rft.au=Chiarelli,%20Nina&rft.date=2023-05-01&rft.volume=85&rft.issue=5&rft.spage=1459&rft.epage=1489&rft.pages=1459-1489&rft.issn=0178-4617&rft.eissn=1432-0541&rft_id=info:doi/10.1007/s00453-022-01079-8&rft_dat=%3Cproquest_cross%3E2805487502%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2805487502&rft_id=info:pmid/&rfr_iscdi=true |