Multi-objective equilibrium optimizer slime mould algorithm and its application in solving engineering problems

This paper aims to represent a multi-objective equilibrium optimizer slime mould algorithm (MOEOSMA) to solve real-world constraint engineering problems. The proposed algorithm has a better optimization performance than the existing multi-objective slime mould algorithm. In the MOEOSMA, dynamic coef...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Structural and multidisciplinary optimization 2023-05, Vol.66 (5), p.114, Article 114
Hauptverfasser: Luo, Qifang, Yin, Shihong, Zhou, Guo, Meng, Weiping, Zhao, Yixin, Zhou, Yongquan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page 114
container_title Structural and multidisciplinary optimization
container_volume 66
creator Luo, Qifang
Yin, Shihong
Zhou, Guo
Meng, Weiping
Zhao, Yixin
Zhou, Yongquan
description This paper aims to represent a multi-objective equilibrium optimizer slime mould algorithm (MOEOSMA) to solve real-world constraint engineering problems. The proposed algorithm has a better optimization performance than the existing multi-objective slime mould algorithm. In the MOEOSMA, dynamic coefficients are used to adjust exploration and exploitation trends. The elite archiving mechanism is used to promote the convergence of the algorithm. The crowding distance method is used to maintain the distribution of the Pareto front. The equilibrium pool strategy is used to simulate the cooperative foraging behavior of the slime mould, which helps to enhance the exploration ability of the algorithm. The performance of MOEOSMA is evaluated on the latest CEC2020 functions, eight real-world multi-objective constraint engineering problems, and four large-scale truss structure optimization problems. The experimental results show that the proposed MOEOSMA not only finds more Pareto optimal solutions, but also maintains a good distribution in the decision space and objective space. Statistical results show that MOEOSMA has a strong competitive advantage in terms of convergence, diversity, uniformity, and extensiveness, and its comprehensive performance is significantly better than other comparable algorithms.
doi_str_mv 10.1007/s00158-023-03568-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2805279952</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2805279952</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-6e52d0b7e6b61e5b5864dbda423f22e11d8d524d6c634e8728a85dfa9a57b3343</originalsourceid><addsrcrecordid>eNp9kLtOwzAUhiMEEqXwAkyWmAO-xI4zooqbVMQCEptlxyfFlROndlKpPD0pRbAxnX_4Lzpfll0SfE0wLm8SxoTLHFOWY8aFzHdH2YwIwnNSSHn8q8v30-wspTXGWOKimmXhefSDy4NZQz24LSDYjM47E93YotAPrnWfEFHyrgXUhtFbpP0qRDd8tEh3FrkhId333tV6cKFDrkMp-K3rVgi6lesA4l73MRgPbTrPThrtE1z83Hn2dn_3unjMly8PT4vbZV4zUg25AE4tNiUIIwhww6UorLG6oKyhFAix0nJaWFELVoAsqdSS20ZXmpeGsYLNs6tD7zS8GSENah3G2E2TikrMaVlVnE4uenDVMaQUoVF9dK2OO0Ww2oNVB7BqAqu-wardFGKHUOr3r0H8q_4n9QWjen7t</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2805279952</pqid></control><display><type>article</type><title>Multi-objective equilibrium optimizer slime mould algorithm and its application in solving engineering problems</title><source>SpringerNature Journals</source><creator>Luo, Qifang ; Yin, Shihong ; Zhou, Guo ; Meng, Weiping ; Zhao, Yixin ; Zhou, Yongquan</creator><creatorcontrib>Luo, Qifang ; Yin, Shihong ; Zhou, Guo ; Meng, Weiping ; Zhao, Yixin ; Zhou, Yongquan</creatorcontrib><description>This paper aims to represent a multi-objective equilibrium optimizer slime mould algorithm (MOEOSMA) to solve real-world constraint engineering problems. The proposed algorithm has a better optimization performance than the existing multi-objective slime mould algorithm. In the MOEOSMA, dynamic coefficients are used to adjust exploration and exploitation trends. The elite archiving mechanism is used to promote the convergence of the algorithm. The crowding distance method is used to maintain the distribution of the Pareto front. The equilibrium pool strategy is used to simulate the cooperative foraging behavior of the slime mould, which helps to enhance the exploration ability of the algorithm. The performance of MOEOSMA is evaluated on the latest CEC2020 functions, eight real-world multi-objective constraint engineering problems, and four large-scale truss structure optimization problems. The experimental results show that the proposed MOEOSMA not only finds more Pareto optimal solutions, but also maintains a good distribution in the decision space and objective space. Statistical results show that MOEOSMA has a strong competitive advantage in terms of convergence, diversity, uniformity, and extensiveness, and its comprehensive performance is significantly better than other comparable algorithms.</description><identifier>ISSN: 1615-147X</identifier><identifier>EISSN: 1615-1488</identifier><identifier>DOI: 10.1007/s00158-023-03568-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Computational Mathematics and Numerical Analysis ; Convergence ; Engineering ; Engineering Design ; Equilibrium ; Multiple objective analysis ; Optimization ; Pareto optimum ; Performance evaluation ; Research Paper ; Slime ; Theoretical and Applied Mechanics ; Trussed structures</subject><ispartof>Structural and multidisciplinary optimization, 2023-05, Vol.66 (5), p.114, Article 114</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-6e52d0b7e6b61e5b5864dbda423f22e11d8d524d6c634e8728a85dfa9a57b3343</citedby><cites>FETCH-LOGICAL-c319t-6e52d0b7e6b61e5b5864dbda423f22e11d8d524d6c634e8728a85dfa9a57b3343</cites><orcidid>0000-0003-4404-952X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00158-023-03568-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00158-023-03568-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Luo, Qifang</creatorcontrib><creatorcontrib>Yin, Shihong</creatorcontrib><creatorcontrib>Zhou, Guo</creatorcontrib><creatorcontrib>Meng, Weiping</creatorcontrib><creatorcontrib>Zhao, Yixin</creatorcontrib><creatorcontrib>Zhou, Yongquan</creatorcontrib><title>Multi-objective equilibrium optimizer slime mould algorithm and its application in solving engineering problems</title><title>Structural and multidisciplinary optimization</title><addtitle>Struct Multidisc Optim</addtitle><description>This paper aims to represent a multi-objective equilibrium optimizer slime mould algorithm (MOEOSMA) to solve real-world constraint engineering problems. The proposed algorithm has a better optimization performance than the existing multi-objective slime mould algorithm. In the MOEOSMA, dynamic coefficients are used to adjust exploration and exploitation trends. The elite archiving mechanism is used to promote the convergence of the algorithm. The crowding distance method is used to maintain the distribution of the Pareto front. The equilibrium pool strategy is used to simulate the cooperative foraging behavior of the slime mould, which helps to enhance the exploration ability of the algorithm. The performance of MOEOSMA is evaluated on the latest CEC2020 functions, eight real-world multi-objective constraint engineering problems, and four large-scale truss structure optimization problems. The experimental results show that the proposed MOEOSMA not only finds more Pareto optimal solutions, but also maintains a good distribution in the decision space and objective space. Statistical results show that MOEOSMA has a strong competitive advantage in terms of convergence, diversity, uniformity, and extensiveness, and its comprehensive performance is significantly better than other comparable algorithms.</description><subject>Algorithms</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Convergence</subject><subject>Engineering</subject><subject>Engineering Design</subject><subject>Equilibrium</subject><subject>Multiple objective analysis</subject><subject>Optimization</subject><subject>Pareto optimum</subject><subject>Performance evaluation</subject><subject>Research Paper</subject><subject>Slime</subject><subject>Theoretical and Applied Mechanics</subject><subject>Trussed structures</subject><issn>1615-147X</issn><issn>1615-1488</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kLtOwzAUhiMEEqXwAkyWmAO-xI4zooqbVMQCEptlxyfFlROndlKpPD0pRbAxnX_4Lzpfll0SfE0wLm8SxoTLHFOWY8aFzHdH2YwIwnNSSHn8q8v30-wspTXGWOKimmXhefSDy4NZQz24LSDYjM47E93YotAPrnWfEFHyrgXUhtFbpP0qRDd8tEh3FrkhId333tV6cKFDrkMp-K3rVgi6lesA4l73MRgPbTrPThrtE1z83Hn2dn_3unjMly8PT4vbZV4zUg25AE4tNiUIIwhww6UorLG6oKyhFAix0nJaWFELVoAsqdSS20ZXmpeGsYLNs6tD7zS8GSENah3G2E2TikrMaVlVnE4uenDVMaQUoVF9dK2OO0Ww2oNVB7BqAqu-wardFGKHUOr3r0H8q_4n9QWjen7t</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Luo, Qifang</creator><creator>Yin, Shihong</creator><creator>Zhou, Guo</creator><creator>Meng, Weiping</creator><creator>Zhao, Yixin</creator><creator>Zhou, Yongquan</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-4404-952X</orcidid></search><sort><creationdate>20230501</creationdate><title>Multi-objective equilibrium optimizer slime mould algorithm and its application in solving engineering problems</title><author>Luo, Qifang ; Yin, Shihong ; Zhou, Guo ; Meng, Weiping ; Zhao, Yixin ; Zhou, Yongquan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-6e52d0b7e6b61e5b5864dbda423f22e11d8d524d6c634e8728a85dfa9a57b3343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Convergence</topic><topic>Engineering</topic><topic>Engineering Design</topic><topic>Equilibrium</topic><topic>Multiple objective analysis</topic><topic>Optimization</topic><topic>Pareto optimum</topic><topic>Performance evaluation</topic><topic>Research Paper</topic><topic>Slime</topic><topic>Theoretical and Applied Mechanics</topic><topic>Trussed structures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Qifang</creatorcontrib><creatorcontrib>Yin, Shihong</creatorcontrib><creatorcontrib>Zhou, Guo</creatorcontrib><creatorcontrib>Meng, Weiping</creatorcontrib><creatorcontrib>Zhao, Yixin</creatorcontrib><creatorcontrib>Zhou, Yongquan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Structural and multidisciplinary optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, Qifang</au><au>Yin, Shihong</au><au>Zhou, Guo</au><au>Meng, Weiping</au><au>Zhao, Yixin</au><au>Zhou, Yongquan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-objective equilibrium optimizer slime mould algorithm and its application in solving engineering problems</atitle><jtitle>Structural and multidisciplinary optimization</jtitle><stitle>Struct Multidisc Optim</stitle><date>2023-05-01</date><risdate>2023</risdate><volume>66</volume><issue>5</issue><spage>114</spage><pages>114-</pages><artnum>114</artnum><issn>1615-147X</issn><eissn>1615-1488</eissn><abstract>This paper aims to represent a multi-objective equilibrium optimizer slime mould algorithm (MOEOSMA) to solve real-world constraint engineering problems. The proposed algorithm has a better optimization performance than the existing multi-objective slime mould algorithm. In the MOEOSMA, dynamic coefficients are used to adjust exploration and exploitation trends. The elite archiving mechanism is used to promote the convergence of the algorithm. The crowding distance method is used to maintain the distribution of the Pareto front. The equilibrium pool strategy is used to simulate the cooperative foraging behavior of the slime mould, which helps to enhance the exploration ability of the algorithm. The performance of MOEOSMA is evaluated on the latest CEC2020 functions, eight real-world multi-objective constraint engineering problems, and four large-scale truss structure optimization problems. The experimental results show that the proposed MOEOSMA not only finds more Pareto optimal solutions, but also maintains a good distribution in the decision space and objective space. Statistical results show that MOEOSMA has a strong competitive advantage in terms of convergence, diversity, uniformity, and extensiveness, and its comprehensive performance is significantly better than other comparable algorithms.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00158-023-03568-y</doi><orcidid>https://orcid.org/0000-0003-4404-952X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1615-147X
ispartof Structural and multidisciplinary optimization, 2023-05, Vol.66 (5), p.114, Article 114
issn 1615-147X
1615-1488
language eng
recordid cdi_proquest_journals_2805279952
source SpringerNature Journals
subjects Algorithms
Computational Mathematics and Numerical Analysis
Convergence
Engineering
Engineering Design
Equilibrium
Multiple objective analysis
Optimization
Pareto optimum
Performance evaluation
Research Paper
Slime
Theoretical and Applied Mechanics
Trussed structures
title Multi-objective equilibrium optimizer slime mould algorithm and its application in solving engineering problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T06%3A02%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-objective%20equilibrium%20optimizer%20slime%20mould%20algorithm%20and%20its%20application%20in%20solving%20engineering%20problems&rft.jtitle=Structural%20and%20multidisciplinary%20optimization&rft.au=Luo,%20Qifang&rft.date=2023-05-01&rft.volume=66&rft.issue=5&rft.spage=114&rft.pages=114-&rft.artnum=114&rft.issn=1615-147X&rft.eissn=1615-1488&rft_id=info:doi/10.1007/s00158-023-03568-y&rft_dat=%3Cproquest_cross%3E2805279952%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2805279952&rft_id=info:pmid/&rfr_iscdi=true