Performance of Self-Healed Alkali-Activated Slag Mortar at Elevated Temperature

AbstractMicrobially induced calcium carbonate precipitation (MICP) is a novel technology aimed at improving the strength and durability of concrete by using micro-organism species. This paper investigated the influence of the bacterial treatment on the strength parameters and microstructures of alka...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials in civil engineering 2023-07, Vol.35 (7)
Hauptverfasser: Bayati, Mohammad, Adelzade Saadabadi, Leyla, Sedaghatdoost, Arash
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page
container_title Journal of materials in civil engineering
container_volume 35
creator Bayati, Mohammad
Adelzade Saadabadi, Leyla
Sedaghatdoost, Arash
description AbstractMicrobially induced calcium carbonate precipitation (MICP) is a novel technology aimed at improving the strength and durability of concrete by using micro-organism species. This paper investigated the influence of the bacterial treatment on the strength parameters and microstructures of alkali-activated slag (AAS) mortars at elevated temperatures. Four AAS mortar mixtures containing varying concentrations of Bacillus pasteurii (103, 105, and 107  cells/mL) were investigated at target temperatures of 23°C, 200°C, 400°C, 600°C, and 800°C. After reaching the target temperature, mass loss, compressive strength, and flexural strength tests were carried out on the specimens. Scanning electron microscopy (SEM), X-ray spectroscopy (EDS), and X-ray diffraction (XRD) tests were conducted to compare the microstructure characteristics of bacteria-containing mortars and the control mortar. The results showed a substantial increase of compressive and flexural strength of AAS mortars at ambient and elevated temperatures. In addition, the microstructure analysis indicated that the bacterial specimens produced calcite, leading to crack healing and improvement of mechanical properties; this confirms the functionality and viability of incorporating Bacillus pasteurii in the alkaline environment of AAS mortars.
doi_str_mv 10.1061/JMCEE7.MTENG-13977
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2805210795</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2805210795</sourcerecordid><originalsourceid>FETCH-LOGICAL-a315t-7c05b619df9aebed2751af1efa6f0cf2a25b02fc10620cbade77b3f4b03a79283</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wNOC57STpNk0x1JWq7RWaD2H2exEWrfdmt0K_nvXruDN08DL-8E8jN0KGAhIxfBpMc0yM1iss-cHLpQ15oz1hB0prrVS56wHY2u50Km4ZFd1vQUABSPoseULxVDFHe49JVVIVlQGPiMsqUgm5TuWGz7xzeYTm1ZYlfiWLKrYYEywSbKSOn1NuwNFbI6RrtlFwLKmm9_bZ6_32Xo64_Plw-N0MueohG648aDzVNgiWKScCmm0wCAoYBrAB4lS5yCDb5-T4HMsyJhchVEOCo2VY9Vnd13vIVYfR6obt62Ocd9OOjkGLQUYq1uX7Fw-VnUdKbhD3OwwfjkB7gec68C5Ezh3AteGhl0Ia09_tf8kvgGrU3Cn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2805210795</pqid></control><display><type>article</type><title>Performance of Self-Healed Alkali-Activated Slag Mortar at Elevated Temperature</title><source>American Society of Civil Engineers:NESLI2:Journals:2014</source><creator>Bayati, Mohammad ; Adelzade Saadabadi, Leyla ; Sedaghatdoost, Arash</creator><creatorcontrib>Bayati, Mohammad ; Adelzade Saadabadi, Leyla ; Sedaghatdoost, Arash</creatorcontrib><description>AbstractMicrobially induced calcium carbonate precipitation (MICP) is a novel technology aimed at improving the strength and durability of concrete by using micro-organism species. This paper investigated the influence of the bacterial treatment on the strength parameters and microstructures of alkali-activated slag (AAS) mortars at elevated temperatures. Four AAS mortar mixtures containing varying concentrations of Bacillus pasteurii (103, 105, and 107  cells/mL) were investigated at target temperatures of 23°C, 200°C, 400°C, 600°C, and 800°C. After reaching the target temperature, mass loss, compressive strength, and flexural strength tests were carried out on the specimens. Scanning electron microscopy (SEM), X-ray spectroscopy (EDS), and X-ray diffraction (XRD) tests were conducted to compare the microstructure characteristics of bacteria-containing mortars and the control mortar. The results showed a substantial increase of compressive and flexural strength of AAS mortars at ambient and elevated temperatures. In addition, the microstructure analysis indicated that the bacterial specimens produced calcite, leading to crack healing and improvement of mechanical properties; this confirms the functionality and viability of incorporating Bacillus pasteurii in the alkaline environment of AAS mortars.</description><identifier>ISSN: 0899-1561</identifier><identifier>EISSN: 1943-5533</identifier><identifier>DOI: 10.1061/JMCEE7.MTENG-13977</identifier><language>eng</language><publisher>New York: American Society of Civil Engineers</publisher><subject>Activated carbon ; Bacteria ; Building materials ; Calcite ; Calcium carbonate ; Civil engineering ; Compressive strength ; Flexural strength ; High temperature ; Mechanical properties ; Microstructure ; Mortars (material) ; Slag ; Technical Papers</subject><ispartof>Journal of materials in civil engineering, 2023-07, Vol.35 (7)</ispartof><rights>2023 American Society of Civil Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a315t-7c05b619df9aebed2751af1efa6f0cf2a25b02fc10620cbade77b3f4b03a79283</citedby><cites>FETCH-LOGICAL-a315t-7c05b619df9aebed2751af1efa6f0cf2a25b02fc10620cbade77b3f4b03a79283</cites><orcidid>0000-0002-9152-1340</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://ascelibrary.org/doi/pdf/10.1061/JMCEE7.MTENG-13977$$EPDF$$P50$$Gasce$$H</linktopdf><linktohtml>$$Uhttp://ascelibrary.org/doi/abs/10.1061/JMCEE7.MTENG-13977$$EHTML$$P50$$Gasce$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,76162,76170</link.rule.ids></links><search><creatorcontrib>Bayati, Mohammad</creatorcontrib><creatorcontrib>Adelzade Saadabadi, Leyla</creatorcontrib><creatorcontrib>Sedaghatdoost, Arash</creatorcontrib><title>Performance of Self-Healed Alkali-Activated Slag Mortar at Elevated Temperature</title><title>Journal of materials in civil engineering</title><description>AbstractMicrobially induced calcium carbonate precipitation (MICP) is a novel technology aimed at improving the strength and durability of concrete by using micro-organism species. This paper investigated the influence of the bacterial treatment on the strength parameters and microstructures of alkali-activated slag (AAS) mortars at elevated temperatures. Four AAS mortar mixtures containing varying concentrations of Bacillus pasteurii (103, 105, and 107  cells/mL) were investigated at target temperatures of 23°C, 200°C, 400°C, 600°C, and 800°C. After reaching the target temperature, mass loss, compressive strength, and flexural strength tests were carried out on the specimens. Scanning electron microscopy (SEM), X-ray spectroscopy (EDS), and X-ray diffraction (XRD) tests were conducted to compare the microstructure characteristics of bacteria-containing mortars and the control mortar. The results showed a substantial increase of compressive and flexural strength of AAS mortars at ambient and elevated temperatures. In addition, the microstructure analysis indicated that the bacterial specimens produced calcite, leading to crack healing and improvement of mechanical properties; this confirms the functionality and viability of incorporating Bacillus pasteurii in the alkaline environment of AAS mortars.</description><subject>Activated carbon</subject><subject>Bacteria</subject><subject>Building materials</subject><subject>Calcite</subject><subject>Calcium carbonate</subject><subject>Civil engineering</subject><subject>Compressive strength</subject><subject>Flexural strength</subject><subject>High temperature</subject><subject>Mechanical properties</subject><subject>Microstructure</subject><subject>Mortars (material)</subject><subject>Slag</subject><subject>Technical Papers</subject><issn>0899-1561</issn><issn>1943-5533</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wNOC57STpNk0x1JWq7RWaD2H2exEWrfdmt0K_nvXruDN08DL-8E8jN0KGAhIxfBpMc0yM1iss-cHLpQ15oz1hB0prrVS56wHY2u50Km4ZFd1vQUABSPoseULxVDFHe49JVVIVlQGPiMsqUgm5TuWGz7xzeYTm1ZYlfiWLKrYYEywSbKSOn1NuwNFbI6RrtlFwLKmm9_bZ6_32Xo64_Plw-N0MueohG648aDzVNgiWKScCmm0wCAoYBrAB4lS5yCDb5-T4HMsyJhchVEOCo2VY9Vnd13vIVYfR6obt62Ocd9OOjkGLQUYq1uX7Fw-VnUdKbhD3OwwfjkB7gec68C5Ezh3AteGhl0Ia09_tf8kvgGrU3Cn</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Bayati, Mohammad</creator><creator>Adelzade Saadabadi, Leyla</creator><creator>Sedaghatdoost, Arash</creator><general>American Society of Civil Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-9152-1340</orcidid></search><sort><creationdate>20230701</creationdate><title>Performance of Self-Healed Alkali-Activated Slag Mortar at Elevated Temperature</title><author>Bayati, Mohammad ; Adelzade Saadabadi, Leyla ; Sedaghatdoost, Arash</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a315t-7c05b619df9aebed2751af1efa6f0cf2a25b02fc10620cbade77b3f4b03a79283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Activated carbon</topic><topic>Bacteria</topic><topic>Building materials</topic><topic>Calcite</topic><topic>Calcium carbonate</topic><topic>Civil engineering</topic><topic>Compressive strength</topic><topic>Flexural strength</topic><topic>High temperature</topic><topic>Mechanical properties</topic><topic>Microstructure</topic><topic>Mortars (material)</topic><topic>Slag</topic><topic>Technical Papers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bayati, Mohammad</creatorcontrib><creatorcontrib>Adelzade Saadabadi, Leyla</creatorcontrib><creatorcontrib>Sedaghatdoost, Arash</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of materials in civil engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bayati, Mohammad</au><au>Adelzade Saadabadi, Leyla</au><au>Sedaghatdoost, Arash</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance of Self-Healed Alkali-Activated Slag Mortar at Elevated Temperature</atitle><jtitle>Journal of materials in civil engineering</jtitle><date>2023-07-01</date><risdate>2023</risdate><volume>35</volume><issue>7</issue><issn>0899-1561</issn><eissn>1943-5533</eissn><abstract>AbstractMicrobially induced calcium carbonate precipitation (MICP) is a novel technology aimed at improving the strength and durability of concrete by using micro-organism species. This paper investigated the influence of the bacterial treatment on the strength parameters and microstructures of alkali-activated slag (AAS) mortars at elevated temperatures. Four AAS mortar mixtures containing varying concentrations of Bacillus pasteurii (103, 105, and 107  cells/mL) were investigated at target temperatures of 23°C, 200°C, 400°C, 600°C, and 800°C. After reaching the target temperature, mass loss, compressive strength, and flexural strength tests were carried out on the specimens. Scanning electron microscopy (SEM), X-ray spectroscopy (EDS), and X-ray diffraction (XRD) tests were conducted to compare the microstructure characteristics of bacteria-containing mortars and the control mortar. The results showed a substantial increase of compressive and flexural strength of AAS mortars at ambient and elevated temperatures. In addition, the microstructure analysis indicated that the bacterial specimens produced calcite, leading to crack healing and improvement of mechanical properties; this confirms the functionality and viability of incorporating Bacillus pasteurii in the alkaline environment of AAS mortars.</abstract><cop>New York</cop><pub>American Society of Civil Engineers</pub><doi>10.1061/JMCEE7.MTENG-13977</doi><orcidid>https://orcid.org/0000-0002-9152-1340</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0899-1561
ispartof Journal of materials in civil engineering, 2023-07, Vol.35 (7)
issn 0899-1561
1943-5533
language eng
recordid cdi_proquest_journals_2805210795
source American Society of Civil Engineers:NESLI2:Journals:2014
subjects Activated carbon
Bacteria
Building materials
Calcite
Calcium carbonate
Civil engineering
Compressive strength
Flexural strength
High temperature
Mechanical properties
Microstructure
Mortars (material)
Slag
Technical Papers
title Performance of Self-Healed Alkali-Activated Slag Mortar at Elevated Temperature
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T17%3A38%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20of%20Self-Healed%20Alkali-Activated%20Slag%20Mortar%20at%20Elevated%20Temperature&rft.jtitle=Journal%20of%20materials%20in%20civil%20engineering&rft.au=Bayati,%20Mohammad&rft.date=2023-07-01&rft.volume=35&rft.issue=7&rft.issn=0899-1561&rft.eissn=1943-5533&rft_id=info:doi/10.1061/JMCEE7.MTENG-13977&rft_dat=%3Cproquest_cross%3E2805210795%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2805210795&rft_id=info:pmid/&rfr_iscdi=true