Energy-Efficient Resource Scheduling and Computation Offloading Strategy for Solar-Powered Agriculture WSN
IoT-based smart agriculture plays a significant role in building a high-yield, sustainable, and intelligent modern agriculture. However, limited battery capacity and low-power processors of sensors cannot accommodate the exponential expansion of data from smart agriculture sensing terminals. To over...
Gespeichert in:
Veröffentlicht in: | Journal of sensors 2023-04, Vol.2023 (1) |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | Journal of sensors |
container_volume | 2023 |
creator | Gao, Juan Wu, Runze Hao, Jianhong Xu, Chen Guo, Haobo Wang, Haonan |
description | IoT-based smart agriculture plays a significant role in building a high-yield, sustainable, and intelligent modern agriculture. However, limited battery capacity and low-power processors of sensors cannot accommodate the exponential expansion of data from smart agriculture sensing terminals. To overcome the challenges, we introduced solar harvesting and multiaccess edge computing (MEC) to investigate sustainable monitoring of smart agriculture in solar-powered MEC-enabled WSNs. Considering the cyclical and day-night fluctuations of solar energy, we formulate a joint optimization problem for resource scheduling and computation offloading strategy to maximize the minimum weighted computation capacity across the time slots under solar energy constraints. To solve the mixed-integer nonlinear program (MINLP), we propose a multiply-iterated decoupling optimization algorithm by jointly optimizing a computation offloading strategy, energy provision of the solar-powered hybrid access point (HAP), and local CPU frequency as well as time scheduling. Simulation results show that the proposed algorithm can efficiently use solar energy to balance network calculations, improve network energy efficiency, and realize unmanned and sustainable agricultural WSN. |
doi_str_mv | 10.1155/2023/7020104 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2804976897</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2804976897</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-989cb2998ba665a1d5d8ad4e5b3ba110b76f64c4889c5c72167b52caebf0bf1c3</originalsourceid><addsrcrecordid>eNp90F1LwzAUBuAgCs7pnT8g4KVWk7T56OUY8wOGE6voXUnSpMvompmmjP17Oza89OocOA_ncF4ArjG6x5jSB4JI-sARQRhlJ2CEmeAJJ0yc_vX0-xxcdN0KIZbyNB2B1aw1od4lM2uddqaN8N10vg_awEIvTdU3rq2hbCs49etNH2V0voULaxsvq_2oiEFGU--g9QEWvpEhefNbE0wFJ3Vwum9iHwz8Kl4vwZmVTWeujnUMPh9nH9PnZL54eplO5onOUBaTXORakTwXSjJGJa5oJWSVGapSJTFGijPLMp2JwVHNCWZcUaKlURYpi3U6BjeHvZvgf3rTxXI1PNQOJ0siUJZzJnI-qLuD0sF3XTC23AS3lmFXYlTu0yz3aZbHNAd-e-BL11Zy6_7Xv_0ddVk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2804976897</pqid></control><display><type>article</type><title>Energy-Efficient Resource Scheduling and Computation Offloading Strategy for Solar-Powered Agriculture WSN</title><source>Wiley Online Library Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Gao, Juan ; Wu, Runze ; Hao, Jianhong ; Xu, Chen ; Guo, Haobo ; Wang, Haonan</creator><contributor>Zhang, Zhenxing</contributor><creatorcontrib>Gao, Juan ; Wu, Runze ; Hao, Jianhong ; Xu, Chen ; Guo, Haobo ; Wang, Haonan ; Zhang, Zhenxing</creatorcontrib><description>IoT-based smart agriculture plays a significant role in building a high-yield, sustainable, and intelligent modern agriculture. However, limited battery capacity and low-power processors of sensors cannot accommodate the exponential expansion of data from smart agriculture sensing terminals. To overcome the challenges, we introduced solar harvesting and multiaccess edge computing (MEC) to investigate sustainable monitoring of smart agriculture in solar-powered MEC-enabled WSNs. Considering the cyclical and day-night fluctuations of solar energy, we formulate a joint optimization problem for resource scheduling and computation offloading strategy to maximize the minimum weighted computation capacity across the time slots under solar energy constraints. To solve the mixed-integer nonlinear program (MINLP), we propose a multiply-iterated decoupling optimization algorithm by jointly optimizing a computation offloading strategy, energy provision of the solar-powered hybrid access point (HAP), and local CPU frequency as well as time scheduling. Simulation results show that the proposed algorithm can efficiently use solar energy to balance network calculations, improve network energy efficiency, and realize unmanned and sustainable agricultural WSN.</description><identifier>ISSN: 1687-725X</identifier><identifier>EISSN: 1687-7268</identifier><identifier>DOI: 10.1155/2023/7020104</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Agriculture ; Algorithms ; Alternative energy sources ; Cloud computing ; Communication ; Computation offloading ; Decoupling ; Design ; Edge computing ; Energy consumption ; Energy efficiency ; Harvesting ; Information returns ; Maintenance costs ; Mixed integer ; Mobile computing ; Optimization ; Random variables ; Renewable resources ; Resource scheduling ; Scheduling ; Sensors ; Solar energy ; Wireless sensor networks</subject><ispartof>Journal of sensors, 2023-04, Vol.2023 (1)</ispartof><rights>Copyright © 2023 Juan Gao et al.</rights><rights>Copyright © 2023 Juan Gao et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-989cb2998ba665a1d5d8ad4e5b3ba110b76f64c4889c5c72167b52caebf0bf1c3</citedby><cites>FETCH-LOGICAL-c404t-989cb2998ba665a1d5d8ad4e5b3ba110b76f64c4889c5c72167b52caebf0bf1c3</cites><orcidid>0000-0003-4659-488X ; 0000-0002-8286-4296</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><contributor>Zhang, Zhenxing</contributor><creatorcontrib>Gao, Juan</creatorcontrib><creatorcontrib>Wu, Runze</creatorcontrib><creatorcontrib>Hao, Jianhong</creatorcontrib><creatorcontrib>Xu, Chen</creatorcontrib><creatorcontrib>Guo, Haobo</creatorcontrib><creatorcontrib>Wang, Haonan</creatorcontrib><title>Energy-Efficient Resource Scheduling and Computation Offloading Strategy for Solar-Powered Agriculture WSN</title><title>Journal of sensors</title><description>IoT-based smart agriculture plays a significant role in building a high-yield, sustainable, and intelligent modern agriculture. However, limited battery capacity and low-power processors of sensors cannot accommodate the exponential expansion of data from smart agriculture sensing terminals. To overcome the challenges, we introduced solar harvesting and multiaccess edge computing (MEC) to investigate sustainable monitoring of smart agriculture in solar-powered MEC-enabled WSNs. Considering the cyclical and day-night fluctuations of solar energy, we formulate a joint optimization problem for resource scheduling and computation offloading strategy to maximize the minimum weighted computation capacity across the time slots under solar energy constraints. To solve the mixed-integer nonlinear program (MINLP), we propose a multiply-iterated decoupling optimization algorithm by jointly optimizing a computation offloading strategy, energy provision of the solar-powered hybrid access point (HAP), and local CPU frequency as well as time scheduling. Simulation results show that the proposed algorithm can efficiently use solar energy to balance network calculations, improve network energy efficiency, and realize unmanned and sustainable agricultural WSN.</description><subject>Agriculture</subject><subject>Algorithms</subject><subject>Alternative energy sources</subject><subject>Cloud computing</subject><subject>Communication</subject><subject>Computation offloading</subject><subject>Decoupling</subject><subject>Design</subject><subject>Edge computing</subject><subject>Energy consumption</subject><subject>Energy efficiency</subject><subject>Harvesting</subject><subject>Information returns</subject><subject>Maintenance costs</subject><subject>Mixed integer</subject><subject>Mobile computing</subject><subject>Optimization</subject><subject>Random variables</subject><subject>Renewable resources</subject><subject>Resource scheduling</subject><subject>Scheduling</subject><subject>Sensors</subject><subject>Solar energy</subject><subject>Wireless sensor networks</subject><issn>1687-725X</issn><issn>1687-7268</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>BENPR</sourceid><recordid>eNp90F1LwzAUBuAgCs7pnT8g4KVWk7T56OUY8wOGE6voXUnSpMvompmmjP17Oza89OocOA_ncF4ArjG6x5jSB4JI-sARQRhlJ2CEmeAJJ0yc_vX0-xxcdN0KIZbyNB2B1aw1od4lM2uddqaN8N10vg_awEIvTdU3rq2hbCs49etNH2V0voULaxsvq_2oiEFGU--g9QEWvpEhefNbE0wFJ3Vwum9iHwz8Kl4vwZmVTWeujnUMPh9nH9PnZL54eplO5onOUBaTXORakTwXSjJGJa5oJWSVGapSJTFGijPLMp2JwVHNCWZcUaKlURYpi3U6BjeHvZvgf3rTxXI1PNQOJ0siUJZzJnI-qLuD0sF3XTC23AS3lmFXYlTu0yz3aZbHNAd-e-BL11Zy6_7Xv_0ddVk</recordid><startdate>20230411</startdate><enddate>20230411</enddate><creator>Gao, Juan</creator><creator>Wu, Runze</creator><creator>Hao, Jianhong</creator><creator>Xu, Chen</creator><creator>Guo, Haobo</creator><creator>Wang, Haonan</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SP</scope><scope>7U5</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-4659-488X</orcidid><orcidid>https://orcid.org/0000-0002-8286-4296</orcidid></search><sort><creationdate>20230411</creationdate><title>Energy-Efficient Resource Scheduling and Computation Offloading Strategy for Solar-Powered Agriculture WSN</title><author>Gao, Juan ; Wu, Runze ; Hao, Jianhong ; Xu, Chen ; Guo, Haobo ; Wang, Haonan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-989cb2998ba665a1d5d8ad4e5b3ba110b76f64c4889c5c72167b52caebf0bf1c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Agriculture</topic><topic>Algorithms</topic><topic>Alternative energy sources</topic><topic>Cloud computing</topic><topic>Communication</topic><topic>Computation offloading</topic><topic>Decoupling</topic><topic>Design</topic><topic>Edge computing</topic><topic>Energy consumption</topic><topic>Energy efficiency</topic><topic>Harvesting</topic><topic>Information returns</topic><topic>Maintenance costs</topic><topic>Mixed integer</topic><topic>Mobile computing</topic><topic>Optimization</topic><topic>Random variables</topic><topic>Renewable resources</topic><topic>Resource scheduling</topic><topic>Scheduling</topic><topic>Sensors</topic><topic>Solar energy</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Juan</creatorcontrib><creatorcontrib>Wu, Runze</creatorcontrib><creatorcontrib>Hao, Jianhong</creatorcontrib><creatorcontrib>Xu, Chen</creatorcontrib><creatorcontrib>Guo, Haobo</creatorcontrib><creatorcontrib>Wang, Haonan</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of sensors</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Juan</au><au>Wu, Runze</au><au>Hao, Jianhong</au><au>Xu, Chen</au><au>Guo, Haobo</au><au>Wang, Haonan</au><au>Zhang, Zhenxing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energy-Efficient Resource Scheduling and Computation Offloading Strategy for Solar-Powered Agriculture WSN</atitle><jtitle>Journal of sensors</jtitle><date>2023-04-11</date><risdate>2023</risdate><volume>2023</volume><issue>1</issue><issn>1687-725X</issn><eissn>1687-7268</eissn><abstract>IoT-based smart agriculture plays a significant role in building a high-yield, sustainable, and intelligent modern agriculture. However, limited battery capacity and low-power processors of sensors cannot accommodate the exponential expansion of data from smart agriculture sensing terminals. To overcome the challenges, we introduced solar harvesting and multiaccess edge computing (MEC) to investigate sustainable monitoring of smart agriculture in solar-powered MEC-enabled WSNs. Considering the cyclical and day-night fluctuations of solar energy, we formulate a joint optimization problem for resource scheduling and computation offloading strategy to maximize the minimum weighted computation capacity across the time slots under solar energy constraints. To solve the mixed-integer nonlinear program (MINLP), we propose a multiply-iterated decoupling optimization algorithm by jointly optimizing a computation offloading strategy, energy provision of the solar-powered hybrid access point (HAP), and local CPU frequency as well as time scheduling. Simulation results show that the proposed algorithm can efficiently use solar energy to balance network calculations, improve network energy efficiency, and realize unmanned and sustainable agricultural WSN.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2023/7020104</doi><orcidid>https://orcid.org/0000-0003-4659-488X</orcidid><orcidid>https://orcid.org/0000-0002-8286-4296</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1687-725X |
ispartof | Journal of sensors, 2023-04, Vol.2023 (1) |
issn | 1687-725X 1687-7268 |
language | eng |
recordid | cdi_proquest_journals_2804976897 |
source | Wiley Online Library Open Access; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Agriculture Algorithms Alternative energy sources Cloud computing Communication Computation offloading Decoupling Design Edge computing Energy consumption Energy efficiency Harvesting Information returns Maintenance costs Mixed integer Mobile computing Optimization Random variables Renewable resources Resource scheduling Scheduling Sensors Solar energy Wireless sensor networks |
title | Energy-Efficient Resource Scheduling and Computation Offloading Strategy for Solar-Powered Agriculture WSN |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T10%3A20%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energy-Efficient%20Resource%20Scheduling%20and%20Computation%20Offloading%20Strategy%20for%20Solar-Powered%20Agriculture%20WSN&rft.jtitle=Journal%20of%20sensors&rft.au=Gao,%20Juan&rft.date=2023-04-11&rft.volume=2023&rft.issue=1&rft.issn=1687-725X&rft.eissn=1687-7268&rft_id=info:doi/10.1155/2023/7020104&rft_dat=%3Cproquest_cross%3E2804976897%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2804976897&rft_id=info:pmid/&rfr_iscdi=true |