Ce3+ ion regulated CoNi-hydroxides for ultrahigh charge rate supercapacitors
Due to the enlarged interlayer spacing of anion-inserted hydroxides and their increased surface area, the unique structure of double-layered hydroxides is often beneficial for electrochemical energy storage. This work demonstrates that Ce3+-regulated CoNi-layered double hydroxides (CoNi-LDHs) signif...
Gespeichert in:
Veröffentlicht in: | CrystEngComm 2023-04, Vol.25 (16), p.2485-2492 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2492 |
---|---|
container_issue | 16 |
container_start_page | 2485 |
container_title | CrystEngComm |
container_volume | 25 |
creator | Liu, Fei Zhao, Mengying Chen, Kunfeng Hu, Mei Xue, Dongfeng |
description | Due to the enlarged interlayer spacing of anion-inserted hydroxides and their increased surface area, the unique structure of double-layered hydroxides is often beneficial for electrochemical energy storage. This work demonstrates that Ce3+-regulated CoNi-layered double hydroxides (CoNi-LDHs) significantly enhance the kinetics of electron transfer and ion motion with increased layer positive charges and weakened O–H bonds. The Ce3+ addition enabled a high rate capacitance of 1000 F g−1 at an ultrahigh charge rate of 50 A g−1 compared with 1322 F g−1 at 1 A g−1. Served as Lewis acid sites, the substituting trivalent Ce3+ for Co2+ decreases the energy barrier of proton diffusion and promotes the fast charge storage kinetics by increasing the hole carrier concentration (6.74 × 1024 cm−3). The fabricated supercapacitor device achieves a high energy density of 30 W h kg−1 at a power density of 10 kW kg−1 (40 A g−1) based on the total mass of active materials. This work simultaneously enhanced intrinsic electronic conductivity and ion diffusion in an electrode by Ce3+ addition. |
doi_str_mv | 10.1039/d3ce00180f |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2804863682</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2804863682</sourcerecordid><originalsourceid>FETCH-LOGICAL-p113t-f40b5757aab3e7a342aa3b9c7ffc933a7fc627b7db5d50b1edb0c0c9982d13d33</originalsourceid><addsrcrecordid>eNotjc1KxDAURoMgOI5ufIKAS6ne9LZNupSijlCczbgebv7aDmVSkxb07S3o6oPD4XyM3Ql4FID1k0XjAIQCf8E2oqiqTAHiFbtO6bTyQgjYsLZx-MCHcObRdctIs7O8CR9D1v_YGL4H6xL3IfJlnCP1Q9dz01PsHI-rytMyuWhoIjPMIaYbdulpTO72f7fs8_Xl0Oyydv_23jy32SQEzpkvQJeylEQanSQsciLUtZHemxqRpDdVLrW0urQlaOGsBgOmrlVuBVrELbv_604xfC0uzcdTWOJ5vTzmCgpVYaVy_AV5HE3s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2804863682</pqid></control><display><type>article</type><title>Ce3+ ion regulated CoNi-hydroxides for ultrahigh charge rate supercapacitors</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Liu, Fei ; Zhao, Mengying ; Chen, Kunfeng ; Hu, Mei ; Xue, Dongfeng</creator><creatorcontrib>Liu, Fei ; Zhao, Mengying ; Chen, Kunfeng ; Hu, Mei ; Xue, Dongfeng</creatorcontrib><description>Due to the enlarged interlayer spacing of anion-inserted hydroxides and their increased surface area, the unique structure of double-layered hydroxides is often beneficial for electrochemical energy storage. This work demonstrates that Ce3+-regulated CoNi-layered double hydroxides (CoNi-LDHs) significantly enhance the kinetics of electron transfer and ion motion with increased layer positive charges and weakened O–H bonds. The Ce3+ addition enabled a high rate capacitance of 1000 F g−1 at an ultrahigh charge rate of 50 A g−1 compared with 1322 F g−1 at 1 A g−1. Served as Lewis acid sites, the substituting trivalent Ce3+ for Co2+ decreases the energy barrier of proton diffusion and promotes the fast charge storage kinetics by increasing the hole carrier concentration (6.74 × 1024 cm−3). The fabricated supercapacitor device achieves a high energy density of 30 W h kg−1 at a power density of 10 kW kg−1 (40 A g−1) based on the total mass of active materials. This work simultaneously enhanced intrinsic electronic conductivity and ion diffusion in an electrode by Ce3+ addition.</description><identifier>EISSN: 1466-8033</identifier><identifier>DOI: 10.1039/d3ce00180f</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Bonding strength ; Carrier density ; Cerium ; Cobalt ; Diffusion barriers ; Diffusion rate ; Electron transfer ; Energy storage ; Hydroxides ; Interlayers ; Ion diffusion ; Ion motion ; Kinetics ; Lewis acid ; Supercapacitors</subject><ispartof>CrystEngComm, 2023-04, Vol.25 (16), p.2485-2492</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Liu, Fei</creatorcontrib><creatorcontrib>Zhao, Mengying</creatorcontrib><creatorcontrib>Chen, Kunfeng</creatorcontrib><creatorcontrib>Hu, Mei</creatorcontrib><creatorcontrib>Xue, Dongfeng</creatorcontrib><title>Ce3+ ion regulated CoNi-hydroxides for ultrahigh charge rate supercapacitors</title><title>CrystEngComm</title><description>Due to the enlarged interlayer spacing of anion-inserted hydroxides and their increased surface area, the unique structure of double-layered hydroxides is often beneficial for electrochemical energy storage. This work demonstrates that Ce3+-regulated CoNi-layered double hydroxides (CoNi-LDHs) significantly enhance the kinetics of electron transfer and ion motion with increased layer positive charges and weakened O–H bonds. The Ce3+ addition enabled a high rate capacitance of 1000 F g−1 at an ultrahigh charge rate of 50 A g−1 compared with 1322 F g−1 at 1 A g−1. Served as Lewis acid sites, the substituting trivalent Ce3+ for Co2+ decreases the energy barrier of proton diffusion and promotes the fast charge storage kinetics by increasing the hole carrier concentration (6.74 × 1024 cm−3). The fabricated supercapacitor device achieves a high energy density of 30 W h kg−1 at a power density of 10 kW kg−1 (40 A g−1) based on the total mass of active materials. This work simultaneously enhanced intrinsic electronic conductivity and ion diffusion in an electrode by Ce3+ addition.</description><subject>Bonding strength</subject><subject>Carrier density</subject><subject>Cerium</subject><subject>Cobalt</subject><subject>Diffusion barriers</subject><subject>Diffusion rate</subject><subject>Electron transfer</subject><subject>Energy storage</subject><subject>Hydroxides</subject><subject>Interlayers</subject><subject>Ion diffusion</subject><subject>Ion motion</subject><subject>Kinetics</subject><subject>Lewis acid</subject><subject>Supercapacitors</subject><issn>1466-8033</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNotjc1KxDAURoMgOI5ufIKAS6ne9LZNupSijlCczbgebv7aDmVSkxb07S3o6oPD4XyM3Ql4FID1k0XjAIQCf8E2oqiqTAHiFbtO6bTyQgjYsLZx-MCHcObRdctIs7O8CR9D1v_YGL4H6xL3IfJlnCP1Q9dz01PsHI-rytMyuWhoIjPMIaYbdulpTO72f7fs8_Xl0Oyydv_23jy32SQEzpkvQJeylEQanSQsciLUtZHemxqRpDdVLrW0urQlaOGsBgOmrlVuBVrELbv_604xfC0uzcdTWOJ5vTzmCgpVYaVy_AV5HE3s</recordid><startdate>20230424</startdate><enddate>20230424</enddate><creator>Liu, Fei</creator><creator>Zhao, Mengying</creator><creator>Chen, Kunfeng</creator><creator>Hu, Mei</creator><creator>Xue, Dongfeng</creator><general>Royal Society of Chemistry</general><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20230424</creationdate><title>Ce3+ ion regulated CoNi-hydroxides for ultrahigh charge rate supercapacitors</title><author>Liu, Fei ; Zhao, Mengying ; Chen, Kunfeng ; Hu, Mei ; Xue, Dongfeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p113t-f40b5757aab3e7a342aa3b9c7ffc933a7fc627b7db5d50b1edb0c0c9982d13d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bonding strength</topic><topic>Carrier density</topic><topic>Cerium</topic><topic>Cobalt</topic><topic>Diffusion barriers</topic><topic>Diffusion rate</topic><topic>Electron transfer</topic><topic>Energy storage</topic><topic>Hydroxides</topic><topic>Interlayers</topic><topic>Ion diffusion</topic><topic>Ion motion</topic><topic>Kinetics</topic><topic>Lewis acid</topic><topic>Supercapacitors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Fei</creatorcontrib><creatorcontrib>Zhao, Mengying</creatorcontrib><creatorcontrib>Chen, Kunfeng</creatorcontrib><creatorcontrib>Hu, Mei</creatorcontrib><creatorcontrib>Xue, Dongfeng</creatorcontrib><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>CrystEngComm</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Fei</au><au>Zhao, Mengying</au><au>Chen, Kunfeng</au><au>Hu, Mei</au><au>Xue, Dongfeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ce3+ ion regulated CoNi-hydroxides for ultrahigh charge rate supercapacitors</atitle><jtitle>CrystEngComm</jtitle><date>2023-04-24</date><risdate>2023</risdate><volume>25</volume><issue>16</issue><spage>2485</spage><epage>2492</epage><pages>2485-2492</pages><eissn>1466-8033</eissn><abstract>Due to the enlarged interlayer spacing of anion-inserted hydroxides and their increased surface area, the unique structure of double-layered hydroxides is often beneficial for electrochemical energy storage. This work demonstrates that Ce3+-regulated CoNi-layered double hydroxides (CoNi-LDHs) significantly enhance the kinetics of electron transfer and ion motion with increased layer positive charges and weakened O–H bonds. The Ce3+ addition enabled a high rate capacitance of 1000 F g−1 at an ultrahigh charge rate of 50 A g−1 compared with 1322 F g−1 at 1 A g−1. Served as Lewis acid sites, the substituting trivalent Ce3+ for Co2+ decreases the energy barrier of proton diffusion and promotes the fast charge storage kinetics by increasing the hole carrier concentration (6.74 × 1024 cm−3). The fabricated supercapacitor device achieves a high energy density of 30 W h kg−1 at a power density of 10 kW kg−1 (40 A g−1) based on the total mass of active materials. This work simultaneously enhanced intrinsic electronic conductivity and ion diffusion in an electrode by Ce3+ addition.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d3ce00180f</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | EISSN: 1466-8033 |
ispartof | CrystEngComm, 2023-04, Vol.25 (16), p.2485-2492 |
issn | 1466-8033 |
language | eng |
recordid | cdi_proquest_journals_2804863682 |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Bonding strength Carrier density Cerium Cobalt Diffusion barriers Diffusion rate Electron transfer Energy storage Hydroxides Interlayers Ion diffusion Ion motion Kinetics Lewis acid Supercapacitors |
title | Ce3+ ion regulated CoNi-hydroxides for ultrahigh charge rate supercapacitors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T13%3A23%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ce3+%20ion%20regulated%20CoNi-hydroxides%20for%20ultrahigh%20charge%20rate%20supercapacitors&rft.jtitle=CrystEngComm&rft.au=Liu,%20Fei&rft.date=2023-04-24&rft.volume=25&rft.issue=16&rft.spage=2485&rft.epage=2492&rft.pages=2485-2492&rft.eissn=1466-8033&rft_id=info:doi/10.1039/d3ce00180f&rft_dat=%3Cproquest%3E2804863682%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2804863682&rft_id=info:pmid/&rfr_iscdi=true |