Machine learning-enabled globally guaranteed evolutionary computation

Evolutionary computation, for example, particle swarm optimization, has impressive achievements in solving complex problems in science and industry; however, an important open problem in evolutionary computation is that there is no theoretical guarantee of reaching the global optimum and general rel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature machine intelligence 2023-04, Vol.5 (4), p.457-467
Hauptverfasser: Li, Bin, Wei, Ziping, Wu, Jingjing, Yu, Shuai, Zhang, Tian, Zhu, Chunli, Zheng, Dezhi, Guo, Weisi, Zhao, Chenglin, Zhang, Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 467
container_issue 4
container_start_page 457
container_title Nature machine intelligence
container_volume 5
creator Li, Bin
Wei, Ziping
Wu, Jingjing
Yu, Shuai
Zhang, Tian
Zhu, Chunli
Zheng, Dezhi
Guo, Weisi
Zhao, Chenglin
Zhang, Jun
description Evolutionary computation, for example, particle swarm optimization, has impressive achievements in solving complex problems in science and industry; however, an important open problem in evolutionary computation is that there is no theoretical guarantee of reaching the global optimum and general reliability; this is due to the lack of a unified representation of diverse problem structures and a generic mechanism by which to avoid local optima. This unresolved challenge impairs trust in the applicability of evolutionary computation to a variety of problems. Here we report an evolutionary computation framework aided by machine learning, named EVOLER, which enables the theoretically guaranteed global optimization of a range of complex non-convex problems. This is achieved by: (1) learning a low-rank representation of a problem with limited samples, which helps to identify an attention subspace; and (2) exploring this small attention subspace via the evolutionary computation method, which helps to reliably avoid local optima. As validated on 20 challenging benchmarks, this method finds the global optimum with a probability approaching 1. We use EVOLER to tackle two important problems: power grid dispatch and the inverse design of nanophotonics devices. The method consistently reached optimal results that were challenging to achieve with previous state-of-the-art methods. EVOLER takes a leap forwards in globally guaranteed evolutionary computation, overcoming the uncertainty of data-driven black-box methods, and offering broad prospects for tackling complex real-world problems. Evolutionary computation methods can find useful solutions for many complex real-world science and engineering problems, but in general there is no guarantee for finding the best solution. This challenge can be tackled with a new framework incorporating machine learning that helps evolutionary methods to avoid local optima.
doi_str_mv 10.1038/s42256-023-00642-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2804804825</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2804804825</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-db4979b396e36405c6fa6654899c090ef4bd5bca299a4f308132098826546fe33</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWGr_gKcFz9HZfJkcpdQPqHjRc8im2XVLmtRkV-i_N3UFPQkD88H7zgwPQpc1XNdA5U1mhHCBgVAMIBjB7ATNCCcEc0nV6Z_6HC1y3gIAqRnjwGZo9Wzsex9c5Z1JoQ8ddsE03m2qzsfGeH-outEkEwZXZu4z-nHoYzDpUNm424-DObYX6Kw1PrvFT56jt_vV6_IRr18enpZ3a2ypoAPeNEzdqoYq4ahgwK1ojRCcSaUsKHAtaza8sYYoZVhLQdaUgJKSFI1oHaVzdDXt3af4Mbo86G0cUygnNZHAjkF4UZFJZVPMOblW71O_Ky_rGvSRmJ6I6UJMfxPTrJjoZMpFHDqXflf_4_oCyoFtpQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2804804825</pqid></control><display><type>article</type><title>Machine learning-enabled globally guaranteed evolutionary computation</title><source>SpringerLink (Online service)</source><creator>Li, Bin ; Wei, Ziping ; Wu, Jingjing ; Yu, Shuai ; Zhang, Tian ; Zhu, Chunli ; Zheng, Dezhi ; Guo, Weisi ; Zhao, Chenglin ; Zhang, Jun</creator><creatorcontrib>Li, Bin ; Wei, Ziping ; Wu, Jingjing ; Yu, Shuai ; Zhang, Tian ; Zhu, Chunli ; Zheng, Dezhi ; Guo, Weisi ; Zhao, Chenglin ; Zhang, Jun</creatorcontrib><description>Evolutionary computation, for example, particle swarm optimization, has impressive achievements in solving complex problems in science and industry; however, an important open problem in evolutionary computation is that there is no theoretical guarantee of reaching the global optimum and general reliability; this is due to the lack of a unified representation of diverse problem structures and a generic mechanism by which to avoid local optima. This unresolved challenge impairs trust in the applicability of evolutionary computation to a variety of problems. Here we report an evolutionary computation framework aided by machine learning, named EVOLER, which enables the theoretically guaranteed global optimization of a range of complex non-convex problems. This is achieved by: (1) learning a low-rank representation of a problem with limited samples, which helps to identify an attention subspace; and (2) exploring this small attention subspace via the evolutionary computation method, which helps to reliably avoid local optima. As validated on 20 challenging benchmarks, this method finds the global optimum with a probability approaching 1. We use EVOLER to tackle two important problems: power grid dispatch and the inverse design of nanophotonics devices. The method consistently reached optimal results that were challenging to achieve with previous state-of-the-art methods. EVOLER takes a leap forwards in globally guaranteed evolutionary computation, overcoming the uncertainty of data-driven black-box methods, and offering broad prospects for tackling complex real-world problems. Evolutionary computation methods can find useful solutions for many complex real-world science and engineering problems, but in general there is no guarantee for finding the best solution. This challenge can be tackled with a new framework incorporating machine learning that helps evolutionary methods to avoid local optima.</description><identifier>ISSN: 2522-5839</identifier><identifier>EISSN: 2522-5839</identifier><identifier>DOI: 10.1038/s42256-023-00642-4</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/624/399 ; 639/705/1041 ; 639/705/1042 ; Engineering ; Evolutionary computation ; Global optimization ; Inverse design ; Machine learning ; Neural networks ; Optimization ; Particle swarm optimization ; Power ; Power dispatch ; Probability ; Representations</subject><ispartof>Nature machine intelligence, 2023-04, Vol.5 (4), p.457-467</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-db4979b396e36405c6fa6654899c090ef4bd5bca299a4f308132098826546fe33</citedby><cites>FETCH-LOGICAL-c363t-db4979b396e36405c6fa6654899c090ef4bd5bca299a4f308132098826546fe33</cites><orcidid>0000-0003-1017-7179 ; 0000-0002-1998-819X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s42256-023-00642-4$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s42256-023-00642-4$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Li, Bin</creatorcontrib><creatorcontrib>Wei, Ziping</creatorcontrib><creatorcontrib>Wu, Jingjing</creatorcontrib><creatorcontrib>Yu, Shuai</creatorcontrib><creatorcontrib>Zhang, Tian</creatorcontrib><creatorcontrib>Zhu, Chunli</creatorcontrib><creatorcontrib>Zheng, Dezhi</creatorcontrib><creatorcontrib>Guo, Weisi</creatorcontrib><creatorcontrib>Zhao, Chenglin</creatorcontrib><creatorcontrib>Zhang, Jun</creatorcontrib><title>Machine learning-enabled globally guaranteed evolutionary computation</title><title>Nature machine intelligence</title><addtitle>Nat Mach Intell</addtitle><description>Evolutionary computation, for example, particle swarm optimization, has impressive achievements in solving complex problems in science and industry; however, an important open problem in evolutionary computation is that there is no theoretical guarantee of reaching the global optimum and general reliability; this is due to the lack of a unified representation of diverse problem structures and a generic mechanism by which to avoid local optima. This unresolved challenge impairs trust in the applicability of evolutionary computation to a variety of problems. Here we report an evolutionary computation framework aided by machine learning, named EVOLER, which enables the theoretically guaranteed global optimization of a range of complex non-convex problems. This is achieved by: (1) learning a low-rank representation of a problem with limited samples, which helps to identify an attention subspace; and (2) exploring this small attention subspace via the evolutionary computation method, which helps to reliably avoid local optima. As validated on 20 challenging benchmarks, this method finds the global optimum with a probability approaching 1. We use EVOLER to tackle two important problems: power grid dispatch and the inverse design of nanophotonics devices. The method consistently reached optimal results that were challenging to achieve with previous state-of-the-art methods. EVOLER takes a leap forwards in globally guaranteed evolutionary computation, overcoming the uncertainty of data-driven black-box methods, and offering broad prospects for tackling complex real-world problems. Evolutionary computation methods can find useful solutions for many complex real-world science and engineering problems, but in general there is no guarantee for finding the best solution. This challenge can be tackled with a new framework incorporating machine learning that helps evolutionary methods to avoid local optima.</description><subject>639/624/399</subject><subject>639/705/1041</subject><subject>639/705/1042</subject><subject>Engineering</subject><subject>Evolutionary computation</subject><subject>Global optimization</subject><subject>Inverse design</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Particle swarm optimization</subject><subject>Power</subject><subject>Power dispatch</subject><subject>Probability</subject><subject>Representations</subject><issn>2522-5839</issn><issn>2522-5839</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1LAzEQhoMoWGr_gKcFz9HZfJkcpdQPqHjRc8im2XVLmtRkV-i_N3UFPQkD88H7zgwPQpc1XNdA5U1mhHCBgVAMIBjB7ATNCCcEc0nV6Z_6HC1y3gIAqRnjwGZo9Wzsex9c5Z1JoQ8ddsE03m2qzsfGeH-outEkEwZXZu4z-nHoYzDpUNm424-DObYX6Kw1PrvFT56jt_vV6_IRr18enpZ3a2ypoAPeNEzdqoYq4ahgwK1ojRCcSaUsKHAtaza8sYYoZVhLQdaUgJKSFI1oHaVzdDXt3af4Mbo86G0cUygnNZHAjkF4UZFJZVPMOblW71O_Ky_rGvSRmJ6I6UJMfxPTrJjoZMpFHDqXflf_4_oCyoFtpQ</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Li, Bin</creator><creator>Wei, Ziping</creator><creator>Wu, Jingjing</creator><creator>Yu, Shuai</creator><creator>Zhang, Tian</creator><creator>Zhu, Chunli</creator><creator>Zheng, Dezhi</creator><creator>Guo, Weisi</creator><creator>Zhao, Chenglin</creator><creator>Zhang, Jun</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-1017-7179</orcidid><orcidid>https://orcid.org/0000-0002-1998-819X</orcidid></search><sort><creationdate>20230401</creationdate><title>Machine learning-enabled globally guaranteed evolutionary computation</title><author>Li, Bin ; Wei, Ziping ; Wu, Jingjing ; Yu, Shuai ; Zhang, Tian ; Zhu, Chunli ; Zheng, Dezhi ; Guo, Weisi ; Zhao, Chenglin ; Zhang, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-db4979b396e36405c6fa6654899c090ef4bd5bca299a4f308132098826546fe33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>639/624/399</topic><topic>639/705/1041</topic><topic>639/705/1042</topic><topic>Engineering</topic><topic>Evolutionary computation</topic><topic>Global optimization</topic><topic>Inverse design</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Particle swarm optimization</topic><topic>Power</topic><topic>Power dispatch</topic><topic>Probability</topic><topic>Representations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Bin</creatorcontrib><creatorcontrib>Wei, Ziping</creatorcontrib><creatorcontrib>Wu, Jingjing</creatorcontrib><creatorcontrib>Yu, Shuai</creatorcontrib><creatorcontrib>Zhang, Tian</creatorcontrib><creatorcontrib>Zhu, Chunli</creatorcontrib><creatorcontrib>Zheng, Dezhi</creatorcontrib><creatorcontrib>Guo, Weisi</creatorcontrib><creatorcontrib>Zhao, Chenglin</creatorcontrib><creatorcontrib>Zhang, Jun</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ProQuest Science Journals</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Nature machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Bin</au><au>Wei, Ziping</au><au>Wu, Jingjing</au><au>Yu, Shuai</au><au>Zhang, Tian</au><au>Zhu, Chunli</au><au>Zheng, Dezhi</au><au>Guo, Weisi</au><au>Zhao, Chenglin</au><au>Zhang, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning-enabled globally guaranteed evolutionary computation</atitle><jtitle>Nature machine intelligence</jtitle><stitle>Nat Mach Intell</stitle><date>2023-04-01</date><risdate>2023</risdate><volume>5</volume><issue>4</issue><spage>457</spage><epage>467</epage><pages>457-467</pages><issn>2522-5839</issn><eissn>2522-5839</eissn><abstract>Evolutionary computation, for example, particle swarm optimization, has impressive achievements in solving complex problems in science and industry; however, an important open problem in evolutionary computation is that there is no theoretical guarantee of reaching the global optimum and general reliability; this is due to the lack of a unified representation of diverse problem structures and a generic mechanism by which to avoid local optima. This unresolved challenge impairs trust in the applicability of evolutionary computation to a variety of problems. Here we report an evolutionary computation framework aided by machine learning, named EVOLER, which enables the theoretically guaranteed global optimization of a range of complex non-convex problems. This is achieved by: (1) learning a low-rank representation of a problem with limited samples, which helps to identify an attention subspace; and (2) exploring this small attention subspace via the evolutionary computation method, which helps to reliably avoid local optima. As validated on 20 challenging benchmarks, this method finds the global optimum with a probability approaching 1. We use EVOLER to tackle two important problems: power grid dispatch and the inverse design of nanophotonics devices. The method consistently reached optimal results that were challenging to achieve with previous state-of-the-art methods. EVOLER takes a leap forwards in globally guaranteed evolutionary computation, overcoming the uncertainty of data-driven black-box methods, and offering broad prospects for tackling complex real-world problems. Evolutionary computation methods can find useful solutions for many complex real-world science and engineering problems, but in general there is no guarantee for finding the best solution. This challenge can be tackled with a new framework incorporating machine learning that helps evolutionary methods to avoid local optima.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s42256-023-00642-4</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-1017-7179</orcidid><orcidid>https://orcid.org/0000-0002-1998-819X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2522-5839
ispartof Nature machine intelligence, 2023-04, Vol.5 (4), p.457-467
issn 2522-5839
2522-5839
language eng
recordid cdi_proquest_journals_2804804825
source SpringerLink (Online service)
subjects 639/624/399
639/705/1041
639/705/1042
Engineering
Evolutionary computation
Global optimization
Inverse design
Machine learning
Neural networks
Optimization
Particle swarm optimization
Power
Power dispatch
Probability
Representations
title Machine learning-enabled globally guaranteed evolutionary computation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T18%3A10%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning-enabled%20globally%20guaranteed%20evolutionary%20computation&rft.jtitle=Nature%20machine%20intelligence&rft.au=Li,%20Bin&rft.date=2023-04-01&rft.volume=5&rft.issue=4&rft.spage=457&rft.epage=467&rft.pages=457-467&rft.issn=2522-5839&rft.eissn=2522-5839&rft_id=info:doi/10.1038/s42256-023-00642-4&rft_dat=%3Cproquest_cross%3E2804804825%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2804804825&rft_id=info:pmid/&rfr_iscdi=true