Machine learning-enabled globally guaranteed evolutionary computation
Evolutionary computation, for example, particle swarm optimization, has impressive achievements in solving complex problems in science and industry; however, an important open problem in evolutionary computation is that there is no theoretical guarantee of reaching the global optimum and general rel...
Gespeichert in:
Veröffentlicht in: | Nature machine intelligence 2023-04, Vol.5 (4), p.457-467 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 467 |
---|---|
container_issue | 4 |
container_start_page | 457 |
container_title | Nature machine intelligence |
container_volume | 5 |
creator | Li, Bin Wei, Ziping Wu, Jingjing Yu, Shuai Zhang, Tian Zhu, Chunli Zheng, Dezhi Guo, Weisi Zhao, Chenglin Zhang, Jun |
description | Evolutionary computation, for example, particle swarm optimization, has impressive achievements in solving complex problems in science and industry; however, an important open problem in evolutionary computation is that there is no theoretical guarantee of reaching the global optimum and general reliability; this is due to the lack of a unified representation of diverse problem structures and a generic mechanism by which to avoid local optima. This unresolved challenge impairs trust in the applicability of evolutionary computation to a variety of problems. Here we report an evolutionary computation framework aided by machine learning, named EVOLER, which enables the theoretically guaranteed global optimization of a range of complex non-convex problems. This is achieved by: (1) learning a low-rank representation of a problem with limited samples, which helps to identify an attention subspace; and (2) exploring this small attention subspace via the evolutionary computation method, which helps to reliably avoid local optima. As validated on 20 challenging benchmarks, this method finds the global optimum with a probability approaching 1. We use EVOLER to tackle two important problems: power grid dispatch and the inverse design of nanophotonics devices. The method consistently reached optimal results that were challenging to achieve with previous state-of-the-art methods. EVOLER takes a leap forwards in globally guaranteed evolutionary computation, overcoming the uncertainty of data-driven black-box methods, and offering broad prospects for tackling complex real-world problems.
Evolutionary computation methods can find useful solutions for many complex real-world science and engineering problems, but in general there is no guarantee for finding the best solution. This challenge can be tackled with a new framework incorporating machine learning that helps evolutionary methods to avoid local optima. |
doi_str_mv | 10.1038/s42256-023-00642-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2804804825</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2804804825</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-db4979b396e36405c6fa6654899c090ef4bd5bca299a4f308132098826546fe33</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWGr_gKcFz9HZfJkcpdQPqHjRc8im2XVLmtRkV-i_N3UFPQkD88H7zgwPQpc1XNdA5U1mhHCBgVAMIBjB7ATNCCcEc0nV6Z_6HC1y3gIAqRnjwGZo9Wzsex9c5Z1JoQ8ddsE03m2qzsfGeH-outEkEwZXZu4z-nHoYzDpUNm424-DObYX6Kw1PrvFT56jt_vV6_IRr18enpZ3a2ypoAPeNEzdqoYq4ahgwK1ojRCcSaUsKHAtaza8sYYoZVhLQdaUgJKSFI1oHaVzdDXt3af4Mbo86G0cUygnNZHAjkF4UZFJZVPMOblW71O_Ky_rGvSRmJ6I6UJMfxPTrJjoZMpFHDqXflf_4_oCyoFtpQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2804804825</pqid></control><display><type>article</type><title>Machine learning-enabled globally guaranteed evolutionary computation</title><source>SpringerLink (Online service)</source><creator>Li, Bin ; Wei, Ziping ; Wu, Jingjing ; Yu, Shuai ; Zhang, Tian ; Zhu, Chunli ; Zheng, Dezhi ; Guo, Weisi ; Zhao, Chenglin ; Zhang, Jun</creator><creatorcontrib>Li, Bin ; Wei, Ziping ; Wu, Jingjing ; Yu, Shuai ; Zhang, Tian ; Zhu, Chunli ; Zheng, Dezhi ; Guo, Weisi ; Zhao, Chenglin ; Zhang, Jun</creatorcontrib><description>Evolutionary computation, for example, particle swarm optimization, has impressive achievements in solving complex problems in science and industry; however, an important open problem in evolutionary computation is that there is no theoretical guarantee of reaching the global optimum and general reliability; this is due to the lack of a unified representation of diverse problem structures and a generic mechanism by which to avoid local optima. This unresolved challenge impairs trust in the applicability of evolutionary computation to a variety of problems. Here we report an evolutionary computation framework aided by machine learning, named EVOLER, which enables the theoretically guaranteed global optimization of a range of complex non-convex problems. This is achieved by: (1) learning a low-rank representation of a problem with limited samples, which helps to identify an attention subspace; and (2) exploring this small attention subspace via the evolutionary computation method, which helps to reliably avoid local optima. As validated on 20 challenging benchmarks, this method finds the global optimum with a probability approaching 1. We use EVOLER to tackle two important problems: power grid dispatch and the inverse design of nanophotonics devices. The method consistently reached optimal results that were challenging to achieve with previous state-of-the-art methods. EVOLER takes a leap forwards in globally guaranteed evolutionary computation, overcoming the uncertainty of data-driven black-box methods, and offering broad prospects for tackling complex real-world problems.
Evolutionary computation methods can find useful solutions for many complex real-world science and engineering problems, but in general there is no guarantee for finding the best solution. This challenge can be tackled with a new framework incorporating machine learning that helps evolutionary methods to avoid local optima.</description><identifier>ISSN: 2522-5839</identifier><identifier>EISSN: 2522-5839</identifier><identifier>DOI: 10.1038/s42256-023-00642-4</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/624/399 ; 639/705/1041 ; 639/705/1042 ; Engineering ; Evolutionary computation ; Global optimization ; Inverse design ; Machine learning ; Neural networks ; Optimization ; Particle swarm optimization ; Power ; Power dispatch ; Probability ; Representations</subject><ispartof>Nature machine intelligence, 2023-04, Vol.5 (4), p.457-467</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-db4979b396e36405c6fa6654899c090ef4bd5bca299a4f308132098826546fe33</citedby><cites>FETCH-LOGICAL-c363t-db4979b396e36405c6fa6654899c090ef4bd5bca299a4f308132098826546fe33</cites><orcidid>0000-0003-1017-7179 ; 0000-0002-1998-819X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s42256-023-00642-4$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s42256-023-00642-4$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Li, Bin</creatorcontrib><creatorcontrib>Wei, Ziping</creatorcontrib><creatorcontrib>Wu, Jingjing</creatorcontrib><creatorcontrib>Yu, Shuai</creatorcontrib><creatorcontrib>Zhang, Tian</creatorcontrib><creatorcontrib>Zhu, Chunli</creatorcontrib><creatorcontrib>Zheng, Dezhi</creatorcontrib><creatorcontrib>Guo, Weisi</creatorcontrib><creatorcontrib>Zhao, Chenglin</creatorcontrib><creatorcontrib>Zhang, Jun</creatorcontrib><title>Machine learning-enabled globally guaranteed evolutionary computation</title><title>Nature machine intelligence</title><addtitle>Nat Mach Intell</addtitle><description>Evolutionary computation, for example, particle swarm optimization, has impressive achievements in solving complex problems in science and industry; however, an important open problem in evolutionary computation is that there is no theoretical guarantee of reaching the global optimum and general reliability; this is due to the lack of a unified representation of diverse problem structures and a generic mechanism by which to avoid local optima. This unresolved challenge impairs trust in the applicability of evolutionary computation to a variety of problems. Here we report an evolutionary computation framework aided by machine learning, named EVOLER, which enables the theoretically guaranteed global optimization of a range of complex non-convex problems. This is achieved by: (1) learning a low-rank representation of a problem with limited samples, which helps to identify an attention subspace; and (2) exploring this small attention subspace via the evolutionary computation method, which helps to reliably avoid local optima. As validated on 20 challenging benchmarks, this method finds the global optimum with a probability approaching 1. We use EVOLER to tackle two important problems: power grid dispatch and the inverse design of nanophotonics devices. The method consistently reached optimal results that were challenging to achieve with previous state-of-the-art methods. EVOLER takes a leap forwards in globally guaranteed evolutionary computation, overcoming the uncertainty of data-driven black-box methods, and offering broad prospects for tackling complex real-world problems.
Evolutionary computation methods can find useful solutions for many complex real-world science and engineering problems, but in general there is no guarantee for finding the best solution. This challenge can be tackled with a new framework incorporating machine learning that helps evolutionary methods to avoid local optima.</description><subject>639/624/399</subject><subject>639/705/1041</subject><subject>639/705/1042</subject><subject>Engineering</subject><subject>Evolutionary computation</subject><subject>Global optimization</subject><subject>Inverse design</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Particle swarm optimization</subject><subject>Power</subject><subject>Power dispatch</subject><subject>Probability</subject><subject>Representations</subject><issn>2522-5839</issn><issn>2522-5839</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1LAzEQhoMoWGr_gKcFz9HZfJkcpdQPqHjRc8im2XVLmtRkV-i_N3UFPQkD88H7zgwPQpc1XNdA5U1mhHCBgVAMIBjB7ATNCCcEc0nV6Z_6HC1y3gIAqRnjwGZo9Wzsex9c5Z1JoQ8ddsE03m2qzsfGeH-outEkEwZXZu4z-nHoYzDpUNm424-DObYX6Kw1PrvFT56jt_vV6_IRr18enpZ3a2ypoAPeNEzdqoYq4ahgwK1ojRCcSaUsKHAtaza8sYYoZVhLQdaUgJKSFI1oHaVzdDXt3af4Mbo86G0cUygnNZHAjkF4UZFJZVPMOblW71O_Ky_rGvSRmJ6I6UJMfxPTrJjoZMpFHDqXflf_4_oCyoFtpQ</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Li, Bin</creator><creator>Wei, Ziping</creator><creator>Wu, Jingjing</creator><creator>Yu, Shuai</creator><creator>Zhang, Tian</creator><creator>Zhu, Chunli</creator><creator>Zheng, Dezhi</creator><creator>Guo, Weisi</creator><creator>Zhao, Chenglin</creator><creator>Zhang, Jun</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-1017-7179</orcidid><orcidid>https://orcid.org/0000-0002-1998-819X</orcidid></search><sort><creationdate>20230401</creationdate><title>Machine learning-enabled globally guaranteed evolutionary computation</title><author>Li, Bin ; Wei, Ziping ; Wu, Jingjing ; Yu, Shuai ; Zhang, Tian ; Zhu, Chunli ; Zheng, Dezhi ; Guo, Weisi ; Zhao, Chenglin ; Zhang, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-db4979b396e36405c6fa6654899c090ef4bd5bca299a4f308132098826546fe33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>639/624/399</topic><topic>639/705/1041</topic><topic>639/705/1042</topic><topic>Engineering</topic><topic>Evolutionary computation</topic><topic>Global optimization</topic><topic>Inverse design</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Particle swarm optimization</topic><topic>Power</topic><topic>Power dispatch</topic><topic>Probability</topic><topic>Representations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Bin</creatorcontrib><creatorcontrib>Wei, Ziping</creatorcontrib><creatorcontrib>Wu, Jingjing</creatorcontrib><creatorcontrib>Yu, Shuai</creatorcontrib><creatorcontrib>Zhang, Tian</creatorcontrib><creatorcontrib>Zhu, Chunli</creatorcontrib><creatorcontrib>Zheng, Dezhi</creatorcontrib><creatorcontrib>Guo, Weisi</creatorcontrib><creatorcontrib>Zhao, Chenglin</creatorcontrib><creatorcontrib>Zhang, Jun</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ProQuest Science Journals</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Nature machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Bin</au><au>Wei, Ziping</au><au>Wu, Jingjing</au><au>Yu, Shuai</au><au>Zhang, Tian</au><au>Zhu, Chunli</au><au>Zheng, Dezhi</au><au>Guo, Weisi</au><au>Zhao, Chenglin</au><au>Zhang, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning-enabled globally guaranteed evolutionary computation</atitle><jtitle>Nature machine intelligence</jtitle><stitle>Nat Mach Intell</stitle><date>2023-04-01</date><risdate>2023</risdate><volume>5</volume><issue>4</issue><spage>457</spage><epage>467</epage><pages>457-467</pages><issn>2522-5839</issn><eissn>2522-5839</eissn><abstract>Evolutionary computation, for example, particle swarm optimization, has impressive achievements in solving complex problems in science and industry; however, an important open problem in evolutionary computation is that there is no theoretical guarantee of reaching the global optimum and general reliability; this is due to the lack of a unified representation of diverse problem structures and a generic mechanism by which to avoid local optima. This unresolved challenge impairs trust in the applicability of evolutionary computation to a variety of problems. Here we report an evolutionary computation framework aided by machine learning, named EVOLER, which enables the theoretically guaranteed global optimization of a range of complex non-convex problems. This is achieved by: (1) learning a low-rank representation of a problem with limited samples, which helps to identify an attention subspace; and (2) exploring this small attention subspace via the evolutionary computation method, which helps to reliably avoid local optima. As validated on 20 challenging benchmarks, this method finds the global optimum with a probability approaching 1. We use EVOLER to tackle two important problems: power grid dispatch and the inverse design of nanophotonics devices. The method consistently reached optimal results that were challenging to achieve with previous state-of-the-art methods. EVOLER takes a leap forwards in globally guaranteed evolutionary computation, overcoming the uncertainty of data-driven black-box methods, and offering broad prospects for tackling complex real-world problems.
Evolutionary computation methods can find useful solutions for many complex real-world science and engineering problems, but in general there is no guarantee for finding the best solution. This challenge can be tackled with a new framework incorporating machine learning that helps evolutionary methods to avoid local optima.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s42256-023-00642-4</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-1017-7179</orcidid><orcidid>https://orcid.org/0000-0002-1998-819X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2522-5839 |
ispartof | Nature machine intelligence, 2023-04, Vol.5 (4), p.457-467 |
issn | 2522-5839 2522-5839 |
language | eng |
recordid | cdi_proquest_journals_2804804825 |
source | SpringerLink (Online service) |
subjects | 639/624/399 639/705/1041 639/705/1042 Engineering Evolutionary computation Global optimization Inverse design Machine learning Neural networks Optimization Particle swarm optimization Power Power dispatch Probability Representations |
title | Machine learning-enabled globally guaranteed evolutionary computation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T18%3A10%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning-enabled%20globally%20guaranteed%20evolutionary%20computation&rft.jtitle=Nature%20machine%20intelligence&rft.au=Li,%20Bin&rft.date=2023-04-01&rft.volume=5&rft.issue=4&rft.spage=457&rft.epage=467&rft.pages=457-467&rft.issn=2522-5839&rft.eissn=2522-5839&rft_id=info:doi/10.1038/s42256-023-00642-4&rft_dat=%3Cproquest_cross%3E2804804825%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2804804825&rft_id=info:pmid/&rfr_iscdi=true |