Relative Ding and K-stability of toric Fano manifolds in low dimensions

The purpose of this article is to clarify all of the uniformly relatively Ding stable toric Fano threefolds and fourfolds as well as unstable ones. The key player in our classification result is the Mabuchi constants, which can be calculated by combinatorial data of the associated moment polytopes d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of mathematics 2023-06, Vol.9 (2), Article 29
Hauptverfasser: Nitta, Yasufumi, Saito, Shunsuke, Yotsutani, Naoto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title European journal of mathematics
container_volume 9
creator Nitta, Yasufumi
Saito, Shunsuke
Yotsutani, Naoto
description The purpose of this article is to clarify all of the uniformly relatively Ding stable toric Fano threefolds and fourfolds as well as unstable ones. The key player in our classification result is the Mabuchi constants, which can be calculated by combinatorial data of the associated moment polytopes due to the work of Yao (Int Math Res Not IMRN 2022(24):19790–19853, 2022). In this article, we give the list of uniform relative Ding stability of all toric Fano manifolds in dimension up to four with the values of the Mabuchi constants. As an application of our main theorem, we clarify the difference between relative K -stability and relative Ding stability by considering some specific toric Fano manifolds. In the proof, we used Bott tower structure of relatively Ding unstable toric Fano manifolds.
doi_str_mv 10.1007/s40879-023-00617-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2804309930</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2804309930</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-7b225b0a7071d25473dd3038a68291ab12636be1d43b64c08b31498161d4217d3</originalsourceid><addsrcrecordid>eNp9kEFLAzEQhYMoWGr_gKeA5-gk2U2yR6m2igVBFLyFZJMtkW1SN1ul_96tK3rzNMPw3pvHh9A5hUsKIK9yAUpWBBgnAIJKAkdowmhVESGFOv7dy9dTNMs5WOCUCc5pMUHLJ9-aPnx4fBPiGpvo8APJvbGhDf0epwb3qQs1XpiY8MbE0KTWZRwibtMndmHjYw4p5jN00pg2-9nPnKKXxe3z_I6sHpf38-sVqbkqeyItY6UFI0FSx8pCcuc4cGWEYhU19tBLWE9dwa0oalB2aFkpKoYLo9LxKboYc7ddet_53Ou3tOvi8FIzBQWHqhrypoiNqrpLOXe-0dsubEy31xT0gZkememBmf5mpg8mPpryII5r3_1F_-P6AinEbJs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2804309930</pqid></control><display><type>article</type><title>Relative Ding and K-stability of toric Fano manifolds in low dimensions</title><source>Springer Nature - Complete Springer Journals</source><creator>Nitta, Yasufumi ; Saito, Shunsuke ; Yotsutani, Naoto</creator><creatorcontrib>Nitta, Yasufumi ; Saito, Shunsuke ; Yotsutani, Naoto</creatorcontrib><description>The purpose of this article is to clarify all of the uniformly relatively Ding stable toric Fano threefolds and fourfolds as well as unstable ones. The key player in our classification result is the Mabuchi constants, which can be calculated by combinatorial data of the associated moment polytopes due to the work of Yao (Int Math Res Not IMRN 2022(24):19790–19853, 2022). In this article, we give the list of uniform relative Ding stability of all toric Fano manifolds in dimension up to four with the values of the Mabuchi constants. As an application of our main theorem, we clarify the difference between relative K -stability and relative Ding stability by considering some specific toric Fano manifolds. In the proof, we used Bott tower structure of relatively Ding unstable toric Fano manifolds.</description><identifier>ISSN: 2199-675X</identifier><identifier>EISSN: 2199-6768</identifier><identifier>DOI: 10.1007/s40879-023-00617-0</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algebraic Geometry ; Combinatorial analysis ; Mathematics ; Mathematics and Statistics ; Polytopes ; Research Article ; Stability</subject><ispartof>European journal of mathematics, 2023-06, Vol.9 (2), Article 29</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-7b225b0a7071d25473dd3038a68291ab12636be1d43b64c08b31498161d4217d3</citedby><cites>FETCH-LOGICAL-c385t-7b225b0a7071d25473dd3038a68291ab12636be1d43b64c08b31498161d4217d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40879-023-00617-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40879-023-00617-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Nitta, Yasufumi</creatorcontrib><creatorcontrib>Saito, Shunsuke</creatorcontrib><creatorcontrib>Yotsutani, Naoto</creatorcontrib><title>Relative Ding and K-stability of toric Fano manifolds in low dimensions</title><title>European journal of mathematics</title><addtitle>European Journal of Mathematics</addtitle><description>The purpose of this article is to clarify all of the uniformly relatively Ding stable toric Fano threefolds and fourfolds as well as unstable ones. The key player in our classification result is the Mabuchi constants, which can be calculated by combinatorial data of the associated moment polytopes due to the work of Yao (Int Math Res Not IMRN 2022(24):19790–19853, 2022). In this article, we give the list of uniform relative Ding stability of all toric Fano manifolds in dimension up to four with the values of the Mabuchi constants. As an application of our main theorem, we clarify the difference between relative K -stability and relative Ding stability by considering some specific toric Fano manifolds. In the proof, we used Bott tower structure of relatively Ding unstable toric Fano manifolds.</description><subject>Algebraic Geometry</subject><subject>Combinatorial analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Polytopes</subject><subject>Research Article</subject><subject>Stability</subject><issn>2199-675X</issn><issn>2199-6768</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLAzEQhYMoWGr_gKeA5-gk2U2yR6m2igVBFLyFZJMtkW1SN1ul_96tK3rzNMPw3pvHh9A5hUsKIK9yAUpWBBgnAIJKAkdowmhVESGFOv7dy9dTNMs5WOCUCc5pMUHLJ9-aPnx4fBPiGpvo8APJvbGhDf0epwb3qQs1XpiY8MbE0KTWZRwibtMndmHjYw4p5jN00pg2-9nPnKKXxe3z_I6sHpf38-sVqbkqeyItY6UFI0FSx8pCcuc4cGWEYhU19tBLWE9dwa0oalB2aFkpKoYLo9LxKboYc7ddet_53Ou3tOvi8FIzBQWHqhrypoiNqrpLOXe-0dsubEy31xT0gZkememBmf5mpg8mPpryII5r3_1F_-P6AinEbJs</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Nitta, Yasufumi</creator><creator>Saito, Shunsuke</creator><creator>Yotsutani, Naoto</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230601</creationdate><title>Relative Ding and K-stability of toric Fano manifolds in low dimensions</title><author>Nitta, Yasufumi ; Saito, Shunsuke ; Yotsutani, Naoto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-7b225b0a7071d25473dd3038a68291ab12636be1d43b64c08b31498161d4217d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algebraic Geometry</topic><topic>Combinatorial analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Polytopes</topic><topic>Research Article</topic><topic>Stability</topic><toplevel>online_resources</toplevel><creatorcontrib>Nitta, Yasufumi</creatorcontrib><creatorcontrib>Saito, Shunsuke</creatorcontrib><creatorcontrib>Yotsutani, Naoto</creatorcontrib><collection>CrossRef</collection><jtitle>European journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nitta, Yasufumi</au><au>Saito, Shunsuke</au><au>Yotsutani, Naoto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Relative Ding and K-stability of toric Fano manifolds in low dimensions</atitle><jtitle>European journal of mathematics</jtitle><stitle>European Journal of Mathematics</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>9</volume><issue>2</issue><artnum>29</artnum><issn>2199-675X</issn><eissn>2199-6768</eissn><abstract>The purpose of this article is to clarify all of the uniformly relatively Ding stable toric Fano threefolds and fourfolds as well as unstable ones. The key player in our classification result is the Mabuchi constants, which can be calculated by combinatorial data of the associated moment polytopes due to the work of Yao (Int Math Res Not IMRN 2022(24):19790–19853, 2022). In this article, we give the list of uniform relative Ding stability of all toric Fano manifolds in dimension up to four with the values of the Mabuchi constants. As an application of our main theorem, we clarify the difference between relative K -stability and relative Ding stability by considering some specific toric Fano manifolds. In the proof, we used Bott tower structure of relatively Ding unstable toric Fano manifolds.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40879-023-00617-0</doi></addata></record>
fulltext fulltext
identifier ISSN: 2199-675X
ispartof European journal of mathematics, 2023-06, Vol.9 (2), Article 29
issn 2199-675X
2199-6768
language eng
recordid cdi_proquest_journals_2804309930
source Springer Nature - Complete Springer Journals
subjects Algebraic Geometry
Combinatorial analysis
Mathematics
Mathematics and Statistics
Polytopes
Research Article
Stability
title Relative Ding and K-stability of toric Fano manifolds in low dimensions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T02%3A06%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Relative%20Ding%20and%20K-stability%20of%20toric%20Fano%20manifolds%20in%20low%20dimensions&rft.jtitle=European%20journal%20of%20mathematics&rft.au=Nitta,%20Yasufumi&rft.date=2023-06-01&rft.volume=9&rft.issue=2&rft.artnum=29&rft.issn=2199-675X&rft.eissn=2199-6768&rft_id=info:doi/10.1007/s40879-023-00617-0&rft_dat=%3Cproquest_cross%3E2804309930%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2804309930&rft_id=info:pmid/&rfr_iscdi=true