An exponential lower bound for Zadeh’s pivot rule
The question whether the Simplex Algorithm admits an efficient pivot rule remains one of the most important open questions in discrete optimization. While many natural, deterministic pivot rules are known to yield exponential running times, the random-facet rule was shown to have a subexponential ru...
Gespeichert in:
Veröffentlicht in: | Mathematical programming 2023-05, Vol.199 (1-2), p.865-936 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 936 |
---|---|
container_issue | 1-2 |
container_start_page | 865 |
container_title | Mathematical programming |
container_volume | 199 |
creator | Disser, Yann Friedmann, Oliver Hopp, Alexander V. |
description | The question whether the Simplex Algorithm admits an efficient pivot rule remains one of the most important open questions in discrete optimization. While many natural, deterministic pivot rules are known to yield exponential running times, the random-facet rule was shown to have a subexponential running time. For a long time, Zadeh’s rule remained the most prominent candidate for the first deterministic pivot rule with subexponential running time. We present a lower bound construction that shows that Zadeh’s rule is in fact exponential in the worst case. Our construction is based on a close relation to the Strategy Improvement Algorithm for Parity Games and the Policy Iteration Algorithm for Markov Decision Processes, and we also obtain exponential lower bounds for Zadeh’s rule in these contexts. |
doi_str_mv | 10.1007/s10107-022-01848-x |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2804309240</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A746541045</galeid><sourcerecordid>A746541045</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-af213b33693643ed97ecc4c68a6fe415943051bf488d6ee3ea698c76cff94f5e3</originalsourceid><addsrcrecordid>eNp9kLtOwzAUhi0EEqXwAkyRmF2OY8dxxqriJiGxwMJiuc5xSZXGxU6gbLwGr8eTYAgSG_JwJOv_zuUj5JTBjAGU55EBg5JCnlNgSii62yMTJrikQgq5TyYAeUELyeCQHMW4BgDGlZoQPu8y3G19h13fmDZr_SuGbOmHrs6cD9mjqfHp8_0jZtvmxfdZGFo8JgfOtBFPfuuUPFxe3C-u6e3d1c1ifkutgLynxuWMLzmXFZeCY12VaK2wUhnpULCiEhwKtnRCqVoicjSyUraU1rlKuAL5lJyNfbfBPw8Ye732Q-jSSJ0rSHSVC0ip2ZhamRZ10znfB2PTq3HT2HSYa9L_vBSyEAxEkYB8BGzwMQZ0ehuajQlvmoH-tqlHmzrZ1D829S5BfIRiCncrDH-7_EN9AXxpd5U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2804309240</pqid></control><display><type>article</type><title>An exponential lower bound for Zadeh’s pivot rule</title><source>Springer Nature - Complete Springer Journals</source><source>EBSCOhost Business Source Complete</source><creator>Disser, Yann ; Friedmann, Oliver ; Hopp, Alexander V.</creator><creatorcontrib>Disser, Yann ; Friedmann, Oliver ; Hopp, Alexander V.</creatorcontrib><description>The question whether the Simplex Algorithm admits an efficient pivot rule remains one of the most important open questions in discrete optimization. While many natural, deterministic pivot rules are known to yield exponential running times, the random-facet rule was shown to have a subexponential running time. For a long time, Zadeh’s rule remained the most prominent candidate for the first deterministic pivot rule with subexponential running time. We present a lower bound construction that shows that Zadeh’s rule is in fact exponential in the worst case. Our construction is based on a close relation to the Strategy Improvement Algorithm for Parity Games and the Policy Iteration Algorithm for Markov Decision Processes, and we also obtain exponential lower bounds for Zadeh’s rule in these contexts.</description><identifier>ISSN: 0025-5610</identifier><identifier>EISSN: 1436-4646</identifier><identifier>DOI: 10.1007/s10107-022-01848-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Calculus of Variations and Optimal Control; Optimization ; Combinatorics ; Full Length Paper ; Iterative algorithms ; Lower bounds ; Markov processes ; Mathematical and Computational Physics ; Mathematical Methods in Physics ; Mathematics ; Mathematics and Statistics ; Mathematics of Computing ; Numerical Analysis ; Optimization ; Questions ; Run time (computers) ; Theoretical</subject><ispartof>Mathematical programming, 2023-05, Vol.199 (1-2), p.865-936</ispartof><rights>The Author(s) 2022</rights><rights>COPYRIGHT 2023 Springer</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-af213b33693643ed97ecc4c68a6fe415943051bf488d6ee3ea698c76cff94f5e3</citedby><cites>FETCH-LOGICAL-c402t-af213b33693643ed97ecc4c68a6fe415943051bf488d6ee3ea698c76cff94f5e3</cites><orcidid>0000-0003-1729-1046 ; 0000-0002-2085-0454</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10107-022-01848-x$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10107-022-01848-x$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Disser, Yann</creatorcontrib><creatorcontrib>Friedmann, Oliver</creatorcontrib><creatorcontrib>Hopp, Alexander V.</creatorcontrib><title>An exponential lower bound for Zadeh’s pivot rule</title><title>Mathematical programming</title><addtitle>Math. Program</addtitle><description>The question whether the Simplex Algorithm admits an efficient pivot rule remains one of the most important open questions in discrete optimization. While many natural, deterministic pivot rules are known to yield exponential running times, the random-facet rule was shown to have a subexponential running time. For a long time, Zadeh’s rule remained the most prominent candidate for the first deterministic pivot rule with subexponential running time. We present a lower bound construction that shows that Zadeh’s rule is in fact exponential in the worst case. Our construction is based on a close relation to the Strategy Improvement Algorithm for Parity Games and the Policy Iteration Algorithm for Markov Decision Processes, and we also obtain exponential lower bounds for Zadeh’s rule in these contexts.</description><subject>Algorithms</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Combinatorics</subject><subject>Full Length Paper</subject><subject>Iterative algorithms</subject><subject>Lower bounds</subject><subject>Markov processes</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mathematics of Computing</subject><subject>Numerical Analysis</subject><subject>Optimization</subject><subject>Questions</subject><subject>Run time (computers)</subject><subject>Theoretical</subject><issn>0025-5610</issn><issn>1436-4646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kLtOwzAUhi0EEqXwAkyRmF2OY8dxxqriJiGxwMJiuc5xSZXGxU6gbLwGr8eTYAgSG_JwJOv_zuUj5JTBjAGU55EBg5JCnlNgSii62yMTJrikQgq5TyYAeUELyeCQHMW4BgDGlZoQPu8y3G19h13fmDZr_SuGbOmHrs6cD9mjqfHp8_0jZtvmxfdZGFo8JgfOtBFPfuuUPFxe3C-u6e3d1c1ifkutgLynxuWMLzmXFZeCY12VaK2wUhnpULCiEhwKtnRCqVoicjSyUraU1rlKuAL5lJyNfbfBPw8Ye732Q-jSSJ0rSHSVC0ip2ZhamRZ10znfB2PTq3HT2HSYa9L_vBSyEAxEkYB8BGzwMQZ0ehuajQlvmoH-tqlHmzrZ1D829S5BfIRiCncrDH-7_EN9AXxpd5U</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Disser, Yann</creator><creator>Friedmann, Oliver</creator><creator>Hopp, Alexander V.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1729-1046</orcidid><orcidid>https://orcid.org/0000-0002-2085-0454</orcidid></search><sort><creationdate>20230501</creationdate><title>An exponential lower bound for Zadeh’s pivot rule</title><author>Disser, Yann ; Friedmann, Oliver ; Hopp, Alexander V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-af213b33693643ed97ecc4c68a6fe415943051bf488d6ee3ea698c76cff94f5e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Combinatorics</topic><topic>Full Length Paper</topic><topic>Iterative algorithms</topic><topic>Lower bounds</topic><topic>Markov processes</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mathematics of Computing</topic><topic>Numerical Analysis</topic><topic>Optimization</topic><topic>Questions</topic><topic>Run time (computers)</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Disser, Yann</creatorcontrib><creatorcontrib>Friedmann, Oliver</creatorcontrib><creatorcontrib>Hopp, Alexander V.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Mathematical programming</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Disser, Yann</au><au>Friedmann, Oliver</au><au>Hopp, Alexander V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An exponential lower bound for Zadeh’s pivot rule</atitle><jtitle>Mathematical programming</jtitle><stitle>Math. Program</stitle><date>2023-05-01</date><risdate>2023</risdate><volume>199</volume><issue>1-2</issue><spage>865</spage><epage>936</epage><pages>865-936</pages><issn>0025-5610</issn><eissn>1436-4646</eissn><abstract>The question whether the Simplex Algorithm admits an efficient pivot rule remains one of the most important open questions in discrete optimization. While many natural, deterministic pivot rules are known to yield exponential running times, the random-facet rule was shown to have a subexponential running time. For a long time, Zadeh’s rule remained the most prominent candidate for the first deterministic pivot rule with subexponential running time. We present a lower bound construction that shows that Zadeh’s rule is in fact exponential in the worst case. Our construction is based on a close relation to the Strategy Improvement Algorithm for Parity Games and the Policy Iteration Algorithm for Markov Decision Processes, and we also obtain exponential lower bounds for Zadeh’s rule in these contexts.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10107-022-01848-x</doi><tpages>72</tpages><orcidid>https://orcid.org/0000-0003-1729-1046</orcidid><orcidid>https://orcid.org/0000-0002-2085-0454</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-5610 |
ispartof | Mathematical programming, 2023-05, Vol.199 (1-2), p.865-936 |
issn | 0025-5610 1436-4646 |
language | eng |
recordid | cdi_proquest_journals_2804309240 |
source | Springer Nature - Complete Springer Journals; EBSCOhost Business Source Complete |
subjects | Algorithms Calculus of Variations and Optimal Control Optimization Combinatorics Full Length Paper Iterative algorithms Lower bounds Markov processes Mathematical and Computational Physics Mathematical Methods in Physics Mathematics Mathematics and Statistics Mathematics of Computing Numerical Analysis Optimization Questions Run time (computers) Theoretical |
title | An exponential lower bound for Zadeh’s pivot rule |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T05%3A07%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20exponential%20lower%20bound%20for%20Zadeh%E2%80%99s%20pivot%20rule&rft.jtitle=Mathematical%20programming&rft.au=Disser,%20Yann&rft.date=2023-05-01&rft.volume=199&rft.issue=1-2&rft.spage=865&rft.epage=936&rft.pages=865-936&rft.issn=0025-5610&rft.eissn=1436-4646&rft_id=info:doi/10.1007/s10107-022-01848-x&rft_dat=%3Cgale_proqu%3EA746541045%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2804309240&rft_id=info:pmid/&rft_galeid=A746541045&rfr_iscdi=true |