An exponential lower bound for Zadeh’s pivot rule

The question whether the Simplex Algorithm admits an efficient pivot rule remains one of the most important open questions in discrete optimization. While many natural, deterministic pivot rules are known to yield exponential running times, the random-facet rule was shown to have a subexponential ru...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical programming 2023-05, Vol.199 (1-2), p.865-936
Hauptverfasser: Disser, Yann, Friedmann, Oliver, Hopp, Alexander V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 936
container_issue 1-2
container_start_page 865
container_title Mathematical programming
container_volume 199
creator Disser, Yann
Friedmann, Oliver
Hopp, Alexander V.
description The question whether the Simplex Algorithm admits an efficient pivot rule remains one of the most important open questions in discrete optimization. While many natural, deterministic pivot rules are known to yield exponential running times, the random-facet rule was shown to have a subexponential running time. For a long time, Zadeh’s rule remained the most prominent candidate for the first deterministic pivot rule with subexponential running time. We present a lower bound construction that shows that Zadeh’s rule is in fact exponential in the worst case. Our construction is based on a close relation to the Strategy Improvement Algorithm for Parity Games and the Policy Iteration Algorithm for Markov Decision Processes, and we also obtain exponential lower bounds for Zadeh’s rule in these contexts.
doi_str_mv 10.1007/s10107-022-01848-x
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2804309240</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A746541045</galeid><sourcerecordid>A746541045</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-af213b33693643ed97ecc4c68a6fe415943051bf488d6ee3ea698c76cff94f5e3</originalsourceid><addsrcrecordid>eNp9kLtOwzAUhi0EEqXwAkyRmF2OY8dxxqriJiGxwMJiuc5xSZXGxU6gbLwGr8eTYAgSG_JwJOv_zuUj5JTBjAGU55EBg5JCnlNgSii62yMTJrikQgq5TyYAeUELyeCQHMW4BgDGlZoQPu8y3G19h13fmDZr_SuGbOmHrs6cD9mjqfHp8_0jZtvmxfdZGFo8JgfOtBFPfuuUPFxe3C-u6e3d1c1ifkutgLynxuWMLzmXFZeCY12VaK2wUhnpULCiEhwKtnRCqVoicjSyUraU1rlKuAL5lJyNfbfBPw8Ye732Q-jSSJ0rSHSVC0ip2ZhamRZ10znfB2PTq3HT2HSYa9L_vBSyEAxEkYB8BGzwMQZ0ehuajQlvmoH-tqlHmzrZ1D829S5BfIRiCncrDH-7_EN9AXxpd5U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2804309240</pqid></control><display><type>article</type><title>An exponential lower bound for Zadeh’s pivot rule</title><source>Springer Nature - Complete Springer Journals</source><source>EBSCOhost Business Source Complete</source><creator>Disser, Yann ; Friedmann, Oliver ; Hopp, Alexander V.</creator><creatorcontrib>Disser, Yann ; Friedmann, Oliver ; Hopp, Alexander V.</creatorcontrib><description>The question whether the Simplex Algorithm admits an efficient pivot rule remains one of the most important open questions in discrete optimization. While many natural, deterministic pivot rules are known to yield exponential running times, the random-facet rule was shown to have a subexponential running time. For a long time, Zadeh’s rule remained the most prominent candidate for the first deterministic pivot rule with subexponential running time. We present a lower bound construction that shows that Zadeh’s rule is in fact exponential in the worst case. Our construction is based on a close relation to the Strategy Improvement Algorithm for Parity Games and the Policy Iteration Algorithm for Markov Decision Processes, and we also obtain exponential lower bounds for Zadeh’s rule in these contexts.</description><identifier>ISSN: 0025-5610</identifier><identifier>EISSN: 1436-4646</identifier><identifier>DOI: 10.1007/s10107-022-01848-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Calculus of Variations and Optimal Control; Optimization ; Combinatorics ; Full Length Paper ; Iterative algorithms ; Lower bounds ; Markov processes ; Mathematical and Computational Physics ; Mathematical Methods in Physics ; Mathematics ; Mathematics and Statistics ; Mathematics of Computing ; Numerical Analysis ; Optimization ; Questions ; Run time (computers) ; Theoretical</subject><ispartof>Mathematical programming, 2023-05, Vol.199 (1-2), p.865-936</ispartof><rights>The Author(s) 2022</rights><rights>COPYRIGHT 2023 Springer</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-af213b33693643ed97ecc4c68a6fe415943051bf488d6ee3ea698c76cff94f5e3</citedby><cites>FETCH-LOGICAL-c402t-af213b33693643ed97ecc4c68a6fe415943051bf488d6ee3ea698c76cff94f5e3</cites><orcidid>0000-0003-1729-1046 ; 0000-0002-2085-0454</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10107-022-01848-x$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10107-022-01848-x$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Disser, Yann</creatorcontrib><creatorcontrib>Friedmann, Oliver</creatorcontrib><creatorcontrib>Hopp, Alexander V.</creatorcontrib><title>An exponential lower bound for Zadeh’s pivot rule</title><title>Mathematical programming</title><addtitle>Math. Program</addtitle><description>The question whether the Simplex Algorithm admits an efficient pivot rule remains one of the most important open questions in discrete optimization. While many natural, deterministic pivot rules are known to yield exponential running times, the random-facet rule was shown to have a subexponential running time. For a long time, Zadeh’s rule remained the most prominent candidate for the first deterministic pivot rule with subexponential running time. We present a lower bound construction that shows that Zadeh’s rule is in fact exponential in the worst case. Our construction is based on a close relation to the Strategy Improvement Algorithm for Parity Games and the Policy Iteration Algorithm for Markov Decision Processes, and we also obtain exponential lower bounds for Zadeh’s rule in these contexts.</description><subject>Algorithms</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Combinatorics</subject><subject>Full Length Paper</subject><subject>Iterative algorithms</subject><subject>Lower bounds</subject><subject>Markov processes</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mathematics of Computing</subject><subject>Numerical Analysis</subject><subject>Optimization</subject><subject>Questions</subject><subject>Run time (computers)</subject><subject>Theoretical</subject><issn>0025-5610</issn><issn>1436-4646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kLtOwzAUhi0EEqXwAkyRmF2OY8dxxqriJiGxwMJiuc5xSZXGxU6gbLwGr8eTYAgSG_JwJOv_zuUj5JTBjAGU55EBg5JCnlNgSii62yMTJrikQgq5TyYAeUELyeCQHMW4BgDGlZoQPu8y3G19h13fmDZr_SuGbOmHrs6cD9mjqfHp8_0jZtvmxfdZGFo8JgfOtBFPfuuUPFxe3C-u6e3d1c1ifkutgLynxuWMLzmXFZeCY12VaK2wUhnpULCiEhwKtnRCqVoicjSyUraU1rlKuAL5lJyNfbfBPw8Ye732Q-jSSJ0rSHSVC0ip2ZhamRZ10znfB2PTq3HT2HSYa9L_vBSyEAxEkYB8BGzwMQZ0ehuajQlvmoH-tqlHmzrZ1D829S5BfIRiCncrDH-7_EN9AXxpd5U</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Disser, Yann</creator><creator>Friedmann, Oliver</creator><creator>Hopp, Alexander V.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1729-1046</orcidid><orcidid>https://orcid.org/0000-0002-2085-0454</orcidid></search><sort><creationdate>20230501</creationdate><title>An exponential lower bound for Zadeh’s pivot rule</title><author>Disser, Yann ; Friedmann, Oliver ; Hopp, Alexander V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-af213b33693643ed97ecc4c68a6fe415943051bf488d6ee3ea698c76cff94f5e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Combinatorics</topic><topic>Full Length Paper</topic><topic>Iterative algorithms</topic><topic>Lower bounds</topic><topic>Markov processes</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mathematics of Computing</topic><topic>Numerical Analysis</topic><topic>Optimization</topic><topic>Questions</topic><topic>Run time (computers)</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Disser, Yann</creatorcontrib><creatorcontrib>Friedmann, Oliver</creatorcontrib><creatorcontrib>Hopp, Alexander V.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Mathematical programming</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Disser, Yann</au><au>Friedmann, Oliver</au><au>Hopp, Alexander V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An exponential lower bound for Zadeh’s pivot rule</atitle><jtitle>Mathematical programming</jtitle><stitle>Math. Program</stitle><date>2023-05-01</date><risdate>2023</risdate><volume>199</volume><issue>1-2</issue><spage>865</spage><epage>936</epage><pages>865-936</pages><issn>0025-5610</issn><eissn>1436-4646</eissn><abstract>The question whether the Simplex Algorithm admits an efficient pivot rule remains one of the most important open questions in discrete optimization. While many natural, deterministic pivot rules are known to yield exponential running times, the random-facet rule was shown to have a subexponential running time. For a long time, Zadeh’s rule remained the most prominent candidate for the first deterministic pivot rule with subexponential running time. We present a lower bound construction that shows that Zadeh’s rule is in fact exponential in the worst case. Our construction is based on a close relation to the Strategy Improvement Algorithm for Parity Games and the Policy Iteration Algorithm for Markov Decision Processes, and we also obtain exponential lower bounds for Zadeh’s rule in these contexts.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10107-022-01848-x</doi><tpages>72</tpages><orcidid>https://orcid.org/0000-0003-1729-1046</orcidid><orcidid>https://orcid.org/0000-0002-2085-0454</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0025-5610
ispartof Mathematical programming, 2023-05, Vol.199 (1-2), p.865-936
issn 0025-5610
1436-4646
language eng
recordid cdi_proquest_journals_2804309240
source Springer Nature - Complete Springer Journals; EBSCOhost Business Source Complete
subjects Algorithms
Calculus of Variations and Optimal Control
Optimization
Combinatorics
Full Length Paper
Iterative algorithms
Lower bounds
Markov processes
Mathematical and Computational Physics
Mathematical Methods in Physics
Mathematics
Mathematics and Statistics
Mathematics of Computing
Numerical Analysis
Optimization
Questions
Run time (computers)
Theoretical
title An exponential lower bound for Zadeh’s pivot rule
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T05%3A07%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20exponential%20lower%20bound%20for%20Zadeh%E2%80%99s%20pivot%20rule&rft.jtitle=Mathematical%20programming&rft.au=Disser,%20Yann&rft.date=2023-05-01&rft.volume=199&rft.issue=1-2&rft.spage=865&rft.epage=936&rft.pages=865-936&rft.issn=0025-5610&rft.eissn=1436-4646&rft_id=info:doi/10.1007/s10107-022-01848-x&rft_dat=%3Cgale_proqu%3EA746541045%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2804309240&rft_id=info:pmid/&rft_galeid=A746541045&rfr_iscdi=true