Modification of Dye-Sensitized Solar Cells by SWCNT Composition as the Active Layer and Introducing TiO2@SiO2 Core–Shell Nanostructure for Light Scattering Layer: Toward Efficiency Enhancement

This study investigates the efficiency improvement of dye-sensitized solar cells (DSSCs) by removing issues in adsorbing dye molecules via enlarging active layer nanostructure. TiO2 nanoparticles (NPs) and the mixture of single-wall carbon nanotube (SWCNT) with TiO2 nanoparticles were used as the ac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on electron devices 2023-05, Vol.70 (5), p.2437
Hauptverfasser: Sani, S Golpaygani, Mohammadi, E, Manavizadeh, N, Khakyzadeh, V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page 2437
container_title IEEE transactions on electron devices
container_volume 70
creator Sani, S Golpaygani
Mohammadi, E
Manavizadeh, N
Khakyzadeh, V
description This study investigates the efficiency improvement of dye-sensitized solar cells (DSSCs) by removing issues in adsorbing dye molecules via enlarging active layer nanostructure. TiO2 nanoparticles (NPs) and the mixture of single-wall carbon nanotube (SWCNT) with TiO2 nanoparticles were used as the active layer in DSSC. Also, TiO2@SiO2 core–shell nanostructure was synthesized and used as a light scattering layer instead of the traditional TiO2 layers. In the TiO2 nanoparticle-based DSSCs, the number of exciton pairs is lower due to the lower space of nanostructures for adsorbing dye molecules, resulting in 3.56% efficiency. Using SWCNT in DSSCs increases the space of nanostructures for adsorbing dye molecules, boosting efficiency up to 5.10%. Moreover, measuring resistivity via four-point probe illustrates that using SWCNTs in nanostructures can cause a considerable decrease in resistivity up to [Formula Omitted]/square. This phenomenon results in better current flow and higher efficiency in these cells. Via measuring UV–visible, it can be seen that mixing 0.04-wt.% SWCNT and TiO2 nanoparticles causes higher absorption than bare nanoparticle DSSCs. Also, UV–vis absorption spectra were applied to determine the optical bandgap of material via the modified Tauc method, which illustrates the reduction of bandgap up to 3.24 eV. Besides, particle sizes were calculated using Debye–Scherrer’s theory, which proves the field emission scanning electron microscopy (FESEM) images. Furthermore, the peaks in X-ray analysis proved the use of the different types of TiO2. Enhancement of structure is one way to improve solar cell characteristics such as efficiency and [Formula Omitted]. This enhancement can result in better charge collection, faster transportation of electrons, and a lower recombination rate that are the most significant issues of conventional solar cells.
doi_str_mv 10.1109/TED.2023.3258404
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2804113622</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2804113622</sourcerecordid><originalsourceid>FETCH-LOGICAL-p113t-19e0710a2097d6b1b51575dc787278a7a448b7f205226a040bedd35ea82373ab3</originalsourceid><addsrcrecordid>eNotjs9O3DAQh62qSGyBO8eROGfxv8RJT0VhaZG2cEgQx5UTT1ijxd46Dmh76jv0jXiUPkm9wGVGI833_X6EnDI6Z4xW5-3ics4pF3PB81JS-YnMWJ6rrCpk8ZnMKGVlVolSHJIv4_iYzkJKPiOvP72xg-11tN6BH-Byh1mDbrTR_kYDjd_oADVuNiN0O2ju65sWav-09fuPhOgR4hrhoo_2GWGpdxhAOwPXLgZvpt66B2jtLf_WpJHIgP_-_G3WSQg32vkxhqmPU0AYfIClfVhHaFKbiGFPvvm-QutfdDCwGFJTi67fwcKttevxCV08JgeD3ox48rGPyN3Voq1_ZMvb79f1xTLbMiZixiqkilHNaaVM0bEuZ7nKTa9KxVWplZay7NTAac55oamkHRojctQlF0roThyRs3fvNvhfE45x9ein4FLkipdUppCCc_EfUTR5-A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2804113622</pqid></control><display><type>article</type><title>Modification of Dye-Sensitized Solar Cells by SWCNT Composition as the Active Layer and Introducing TiO2@SiO2 Core–Shell Nanostructure for Light Scattering Layer: Toward Efficiency Enhancement</title><source>IEEE Electronic Library (IEL)</source><creator>Sani, S Golpaygani ; Mohammadi, E ; Manavizadeh, N ; Khakyzadeh, V</creator><creatorcontrib>Sani, S Golpaygani ; Mohammadi, E ; Manavizadeh, N ; Khakyzadeh, V</creatorcontrib><description>This study investigates the efficiency improvement of dye-sensitized solar cells (DSSCs) by removing issues in adsorbing dye molecules via enlarging active layer nanostructure. TiO2 nanoparticles (NPs) and the mixture of single-wall carbon nanotube (SWCNT) with TiO2 nanoparticles were used as the active layer in DSSC. Also, TiO2@SiO2 core–shell nanostructure was synthesized and used as a light scattering layer instead of the traditional TiO2 layers. In the TiO2 nanoparticle-based DSSCs, the number of exciton pairs is lower due to the lower space of nanostructures for adsorbing dye molecules, resulting in 3.56% efficiency. Using SWCNT in DSSCs increases the space of nanostructures for adsorbing dye molecules, boosting efficiency up to 5.10%. Moreover, measuring resistivity via four-point probe illustrates that using SWCNTs in nanostructures can cause a considerable decrease in resistivity up to [Formula Omitted]/square. This phenomenon results in better current flow and higher efficiency in these cells. Via measuring UV–visible, it can be seen that mixing 0.04-wt.% SWCNT and TiO2 nanoparticles causes higher absorption than bare nanoparticle DSSCs. Also, UV–vis absorption spectra were applied to determine the optical bandgap of material via the modified Tauc method, which illustrates the reduction of bandgap up to 3.24 eV. Besides, particle sizes were calculated using Debye–Scherrer’s theory, which proves the field emission scanning electron microscopy (FESEM) images. Furthermore, the peaks in X-ray analysis proved the use of the different types of TiO2. Enhancement of structure is one way to improve solar cell characteristics such as efficiency and [Formula Omitted]. This enhancement can result in better charge collection, faster transportation of electrons, and a lower recombination rate that are the most significant issues of conventional solar cells.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2023.3258404</identifier><language>eng</language><publisher>New York: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</publisher><subject>Absorption spectra ; Core-shell structure ; Dye-sensitized solar cells ; Dyes ; Efficiency ; Electrical resistivity ; Emission analysis ; Energy gap ; Excitons ; Field emission microscopy ; Light scattering ; Nanoparticles ; Nanostructure ; Photovoltaic cells ; Silicon dioxide ; Single wall carbon nanotubes ; Titanium dioxide ; X ray analysis</subject><ispartof>IEEE transactions on electron devices, 2023-05, Vol.70 (5), p.2437</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Sani, S Golpaygani</creatorcontrib><creatorcontrib>Mohammadi, E</creatorcontrib><creatorcontrib>Manavizadeh, N</creatorcontrib><creatorcontrib>Khakyzadeh, V</creatorcontrib><title>Modification of Dye-Sensitized Solar Cells by SWCNT Composition as the Active Layer and Introducing TiO2@SiO2 Core–Shell Nanostructure for Light Scattering Layer: Toward Efficiency Enhancement</title><title>IEEE transactions on electron devices</title><description>This study investigates the efficiency improvement of dye-sensitized solar cells (DSSCs) by removing issues in adsorbing dye molecules via enlarging active layer nanostructure. TiO2 nanoparticles (NPs) and the mixture of single-wall carbon nanotube (SWCNT) with TiO2 nanoparticles were used as the active layer in DSSC. Also, TiO2@SiO2 core–shell nanostructure was synthesized and used as a light scattering layer instead of the traditional TiO2 layers. In the TiO2 nanoparticle-based DSSCs, the number of exciton pairs is lower due to the lower space of nanostructures for adsorbing dye molecules, resulting in 3.56% efficiency. Using SWCNT in DSSCs increases the space of nanostructures for adsorbing dye molecules, boosting efficiency up to 5.10%. Moreover, measuring resistivity via four-point probe illustrates that using SWCNTs in nanostructures can cause a considerable decrease in resistivity up to [Formula Omitted]/square. This phenomenon results in better current flow and higher efficiency in these cells. Via measuring UV–visible, it can be seen that mixing 0.04-wt.% SWCNT and TiO2 nanoparticles causes higher absorption than bare nanoparticle DSSCs. Also, UV–vis absorption spectra were applied to determine the optical bandgap of material via the modified Tauc method, which illustrates the reduction of bandgap up to 3.24 eV. Besides, particle sizes were calculated using Debye–Scherrer’s theory, which proves the field emission scanning electron microscopy (FESEM) images. Furthermore, the peaks in X-ray analysis proved the use of the different types of TiO2. Enhancement of structure is one way to improve solar cell characteristics such as efficiency and [Formula Omitted]. This enhancement can result in better charge collection, faster transportation of electrons, and a lower recombination rate that are the most significant issues of conventional solar cells.</description><subject>Absorption spectra</subject><subject>Core-shell structure</subject><subject>Dye-sensitized solar cells</subject><subject>Dyes</subject><subject>Efficiency</subject><subject>Electrical resistivity</subject><subject>Emission analysis</subject><subject>Energy gap</subject><subject>Excitons</subject><subject>Field emission microscopy</subject><subject>Light scattering</subject><subject>Nanoparticles</subject><subject>Nanostructure</subject><subject>Photovoltaic cells</subject><subject>Silicon dioxide</subject><subject>Single wall carbon nanotubes</subject><subject>Titanium dioxide</subject><subject>X ray analysis</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNotjs9O3DAQh62qSGyBO8eROGfxv8RJT0VhaZG2cEgQx5UTT1ijxd46Dmh76jv0jXiUPkm9wGVGI833_X6EnDI6Z4xW5-3ics4pF3PB81JS-YnMWJ6rrCpk8ZnMKGVlVolSHJIv4_iYzkJKPiOvP72xg-11tN6BH-Byh1mDbrTR_kYDjd_oADVuNiN0O2ju65sWav-09fuPhOgR4hrhoo_2GWGpdxhAOwPXLgZvpt66B2jtLf_WpJHIgP_-_G3WSQg32vkxhqmPU0AYfIClfVhHaFKbiGFPvvm-QutfdDCwGFJTi67fwcKttevxCV08JgeD3ox48rGPyN3Voq1_ZMvb79f1xTLbMiZixiqkilHNaaVM0bEuZ7nKTa9KxVWplZay7NTAac55oamkHRojctQlF0roThyRs3fvNvhfE45x9ein4FLkipdUppCCc_EfUTR5-A</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Sani, S Golpaygani</creator><creator>Mohammadi, E</creator><creator>Manavizadeh, N</creator><creator>Khakyzadeh, V</creator><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20230501</creationdate><title>Modification of Dye-Sensitized Solar Cells by SWCNT Composition as the Active Layer and Introducing TiO2@SiO2 Core–Shell Nanostructure for Light Scattering Layer: Toward Efficiency Enhancement</title><author>Sani, S Golpaygani ; Mohammadi, E ; Manavizadeh, N ; Khakyzadeh, V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p113t-19e0710a2097d6b1b51575dc787278a7a448b7f205226a040bedd35ea82373ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Absorption spectra</topic><topic>Core-shell structure</topic><topic>Dye-sensitized solar cells</topic><topic>Dyes</topic><topic>Efficiency</topic><topic>Electrical resistivity</topic><topic>Emission analysis</topic><topic>Energy gap</topic><topic>Excitons</topic><topic>Field emission microscopy</topic><topic>Light scattering</topic><topic>Nanoparticles</topic><topic>Nanostructure</topic><topic>Photovoltaic cells</topic><topic>Silicon dioxide</topic><topic>Single wall carbon nanotubes</topic><topic>Titanium dioxide</topic><topic>X ray analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sani, S Golpaygani</creatorcontrib><creatorcontrib>Mohammadi, E</creatorcontrib><creatorcontrib>Manavizadeh, N</creatorcontrib><creatorcontrib>Khakyzadeh, V</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sani, S Golpaygani</au><au>Mohammadi, E</au><au>Manavizadeh, N</au><au>Khakyzadeh, V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modification of Dye-Sensitized Solar Cells by SWCNT Composition as the Active Layer and Introducing TiO2@SiO2 Core–Shell Nanostructure for Light Scattering Layer: Toward Efficiency Enhancement</atitle><jtitle>IEEE transactions on electron devices</jtitle><date>2023-05-01</date><risdate>2023</risdate><volume>70</volume><issue>5</issue><spage>2437</spage><pages>2437-</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><abstract>This study investigates the efficiency improvement of dye-sensitized solar cells (DSSCs) by removing issues in adsorbing dye molecules via enlarging active layer nanostructure. TiO2 nanoparticles (NPs) and the mixture of single-wall carbon nanotube (SWCNT) with TiO2 nanoparticles were used as the active layer in DSSC. Also, TiO2@SiO2 core–shell nanostructure was synthesized and used as a light scattering layer instead of the traditional TiO2 layers. In the TiO2 nanoparticle-based DSSCs, the number of exciton pairs is lower due to the lower space of nanostructures for adsorbing dye molecules, resulting in 3.56% efficiency. Using SWCNT in DSSCs increases the space of nanostructures for adsorbing dye molecules, boosting efficiency up to 5.10%. Moreover, measuring resistivity via four-point probe illustrates that using SWCNTs in nanostructures can cause a considerable decrease in resistivity up to [Formula Omitted]/square. This phenomenon results in better current flow and higher efficiency in these cells. Via measuring UV–visible, it can be seen that mixing 0.04-wt.% SWCNT and TiO2 nanoparticles causes higher absorption than bare nanoparticle DSSCs. Also, UV–vis absorption spectra were applied to determine the optical bandgap of material via the modified Tauc method, which illustrates the reduction of bandgap up to 3.24 eV. Besides, particle sizes were calculated using Debye–Scherrer’s theory, which proves the field emission scanning electron microscopy (FESEM) images. Furthermore, the peaks in X-ray analysis proved the use of the different types of TiO2. Enhancement of structure is one way to improve solar cell characteristics such as efficiency and [Formula Omitted]. This enhancement can result in better charge collection, faster transportation of electrons, and a lower recombination rate that are the most significant issues of conventional solar cells.</abstract><cop>New York</cop><pub>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</pub><doi>10.1109/TED.2023.3258404</doi></addata></record>
fulltext fulltext
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 2023-05, Vol.70 (5), p.2437
issn 0018-9383
1557-9646
language eng
recordid cdi_proquest_journals_2804113622
source IEEE Electronic Library (IEL)
subjects Absorption spectra
Core-shell structure
Dye-sensitized solar cells
Dyes
Efficiency
Electrical resistivity
Emission analysis
Energy gap
Excitons
Field emission microscopy
Light scattering
Nanoparticles
Nanostructure
Photovoltaic cells
Silicon dioxide
Single wall carbon nanotubes
Titanium dioxide
X ray analysis
title Modification of Dye-Sensitized Solar Cells by SWCNT Composition as the Active Layer and Introducing TiO2@SiO2 Core–Shell Nanostructure for Light Scattering Layer: Toward Efficiency Enhancement
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T18%3A47%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modification%20of%20Dye-Sensitized%20Solar%20Cells%20by%20SWCNT%20Composition%20as%20the%20Active%20Layer%20and%20Introducing%20TiO2@SiO2%20Core%E2%80%93Shell%20Nanostructure%20for%20Light%20Scattering%20Layer:%20Toward%20Efficiency%20Enhancement&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Sani,%20S%20Golpaygani&rft.date=2023-05-01&rft.volume=70&rft.issue=5&rft.spage=2437&rft.pages=2437-&rft.issn=0018-9383&rft.eissn=1557-9646&rft_id=info:doi/10.1109/TED.2023.3258404&rft_dat=%3Cproquest%3E2804113622%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2804113622&rft_id=info:pmid/&rfr_iscdi=true