Coral derived nano calcium carbonate incorporated acrylonitrile butadiene rubber composites: Green look at properties

Synthesizing nanofillers from bioresources in a cost-effective way is a practical approach to manage waste and circular economy. This paper highlights the preparation of nano-calcium carbonate (NCC) from dead coral exoskeleton by a simple hydrothermal method. The NCC was characterized using Fourier-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of polymer research 2023-05, Vol.30 (5), Article 176
Hauptverfasser: Midhun Dominic, C. D., Neenu, K. V., Mohammad Sajadi, S., Sabura Begum, P. M., Gopinath, Anu, Ragi, A. S., Sruthy, S., Dileep, P., Joseph, Rani, Ilyas, R. A., Parameswaranpillai, Jyotishkumar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page
container_title Journal of polymer research
container_volume 30
creator Midhun Dominic, C. D.
Neenu, K. V.
Mohammad Sajadi, S.
Sabura Begum, P. M.
Gopinath, Anu
Ragi, A. S.
Sruthy, S.
Dileep, P.
Joseph, Rani
Ilyas, R. A.
Parameswaranpillai, Jyotishkumar
description Synthesizing nanofillers from bioresources in a cost-effective way is a practical approach to manage waste and circular economy. This paper highlights the preparation of nano-calcium carbonate (NCC) from dead coral exoskeleton by a simple hydrothermal method. The NCC was characterized using Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and BET surface area analysis. NCC with a particle size of 10-20 nm was obtained by this method. A two-roll mill was used to make the nanocomposites of acrylonitrile-butadiene rubber (NBR) with NCC at various filler concentrations (3, 6, and 9 phr). The cure, physico-mechanical, thermal, swelling, and dynamic properties of the composites were investigated. The mechanical and technological properties of NBR were improved by the incorporation of NCC. About 89% increase in tensile strength was observed with the inclusion of 3 phr NCC to the NBR-Gum. The thermal stability of NBR (T max ) was increased from 450 °C to 455 °C by the addition of 3 phr NCC. Furthermore, the 9 phr NCC composite showed an 18% lower swelling index and 27% higher crosslink density compared to NBR-Gum. The glass transition temperature of NBR increases from -4.70 to -3.29 °C with the addition of 3 phr NCC. The highest Payne effect was observed for NBR-NCC 9 phr composite, indicating effective filler-filler network formation.
doi_str_mv 10.1007/s10965-023-03544-6
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2804034547</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A746441180</galeid><sourcerecordid>A746441180</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-ba10dfbb3c56db67ed20ad80ea31fe09ffe0373b3793813dc5b1d5a00b24994d3</originalsourceid><addsrcrecordid>eNp9kU9rFjEQhxdRsFa_gKeA562TTbLZ9VZetBYKveg55M9sSd03WSdZod_e2BW8SWAmh-fJZPh13XsOVxxAfywc5lH1MIgehJKyH190F1zpoZ9moV62OwxDP-sRXndvSnkEUEqP00W3nzLZlQWk-AsDSzZl5u3q435unVxOtiKLyWfaGlkbYz09rTnFSnFF5vZqQ8SEjHbnkJjP5y2XWLF8YjeEmNia8w9mK9sob0g1YnnbvVrsWvDd337Zff_y-dvpa393f3N7ur7rvYC59s5yCItzwqsxuFFjGMCGCdAKviDMSytCCyf0LCYugleOB2UB3CDnWQZx2X043m2jf-5YqnnMO6U20gwTSBBSSd2oq4N6sCuamJZcyfp2Ap6jzwmXtqi51nKUkvMJmjAcgqdcCuFiNopnS0-Gg_mThznyMC0P85yHGZskDqk0OD0g_fvLf6zfR0CQSw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2804034547</pqid></control><display><type>article</type><title>Coral derived nano calcium carbonate incorporated acrylonitrile butadiene rubber composites: Green look at properties</title><source>Springer Nature - Complete Springer Journals</source><creator>Midhun Dominic, C. D. ; Neenu, K. V. ; Mohammad Sajadi, S. ; Sabura Begum, P. M. ; Gopinath, Anu ; Ragi, A. S. ; Sruthy, S. ; Dileep, P. ; Joseph, Rani ; Ilyas, R. A. ; Parameswaranpillai, Jyotishkumar</creator><creatorcontrib>Midhun Dominic, C. D. ; Neenu, K. V. ; Mohammad Sajadi, S. ; Sabura Begum, P. M. ; Gopinath, Anu ; Ragi, A. S. ; Sruthy, S. ; Dileep, P. ; Joseph, Rani ; Ilyas, R. A. ; Parameswaranpillai, Jyotishkumar</creatorcontrib><description>Synthesizing nanofillers from bioresources in a cost-effective way is a practical approach to manage waste and circular economy. This paper highlights the preparation of nano-calcium carbonate (NCC) from dead coral exoskeleton by a simple hydrothermal method. The NCC was characterized using Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and BET surface area analysis. NCC with a particle size of 10-20 nm was obtained by this method. A two-roll mill was used to make the nanocomposites of acrylonitrile-butadiene rubber (NBR) with NCC at various filler concentrations (3, 6, and 9 phr). The cure, physico-mechanical, thermal, swelling, and dynamic properties of the composites were investigated. The mechanical and technological properties of NBR were improved by the incorporation of NCC. About 89% increase in tensile strength was observed with the inclusion of 3 phr NCC to the NBR-Gum. The thermal stability of NBR (T max ) was increased from 450 °C to 455 °C by the addition of 3 phr NCC. Furthermore, the 9 phr NCC composite showed an 18% lower swelling index and 27% higher crosslink density compared to NBR-Gum. The glass transition temperature of NBR increases from -4.70 to -3.29 °C with the addition of 3 phr NCC. The highest Payne effect was observed for NBR-NCC 9 phr composite, indicating effective filler-filler network formation.</description><identifier>ISSN: 1022-9760</identifier><identifier>EISSN: 1572-8935</identifier><identifier>DOI: 10.1007/s10965-023-03544-6</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Acrylonitrile ; Butadiene ; Calcium carbonate ; Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Diffraction ; Electron microscopy ; Exoskeletons ; Fillers ; Fourier transforms ; Glass transition temperature ; Industrial Chemistry/Chemical Engineering ; Infrared spectroscopy ; Microscopy ; Nanocomposites ; Network formation ; Nitrile rubber ; Original Paper ; Polymer Sciences ; Rubber ; Swelling ; Tensile strength ; Thermal stability ; X-rays</subject><ispartof>Journal of polymer research, 2023-05, Vol.30 (5), Article 176</ispartof><rights>The Polymer Society, Taipei 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>COPYRIGHT 2023 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c309t-ba10dfbb3c56db67ed20ad80ea31fe09ffe0373b3793813dc5b1d5a00b24994d3</cites><orcidid>0000-0001-9170-6575</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10965-023-03544-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10965-023-03544-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Midhun Dominic, C. D.</creatorcontrib><creatorcontrib>Neenu, K. V.</creatorcontrib><creatorcontrib>Mohammad Sajadi, S.</creatorcontrib><creatorcontrib>Sabura Begum, P. M.</creatorcontrib><creatorcontrib>Gopinath, Anu</creatorcontrib><creatorcontrib>Ragi, A. S.</creatorcontrib><creatorcontrib>Sruthy, S.</creatorcontrib><creatorcontrib>Dileep, P.</creatorcontrib><creatorcontrib>Joseph, Rani</creatorcontrib><creatorcontrib>Ilyas, R. A.</creatorcontrib><creatorcontrib>Parameswaranpillai, Jyotishkumar</creatorcontrib><title>Coral derived nano calcium carbonate incorporated acrylonitrile butadiene rubber composites: Green look at properties</title><title>Journal of polymer research</title><addtitle>J Polym Res</addtitle><description>Synthesizing nanofillers from bioresources in a cost-effective way is a practical approach to manage waste and circular economy. This paper highlights the preparation of nano-calcium carbonate (NCC) from dead coral exoskeleton by a simple hydrothermal method. The NCC was characterized using Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and BET surface area analysis. NCC with a particle size of 10-20 nm was obtained by this method. A two-roll mill was used to make the nanocomposites of acrylonitrile-butadiene rubber (NBR) with NCC at various filler concentrations (3, 6, and 9 phr). The cure, physico-mechanical, thermal, swelling, and dynamic properties of the composites were investigated. The mechanical and technological properties of NBR were improved by the incorporation of NCC. About 89% increase in tensile strength was observed with the inclusion of 3 phr NCC to the NBR-Gum. The thermal stability of NBR (T max ) was increased from 450 °C to 455 °C by the addition of 3 phr NCC. Furthermore, the 9 phr NCC composite showed an 18% lower swelling index and 27% higher crosslink density compared to NBR-Gum. The glass transition temperature of NBR increases from -4.70 to -3.29 °C with the addition of 3 phr NCC. The highest Payne effect was observed for NBR-NCC 9 phr composite, indicating effective filler-filler network formation.</description><subject>Acrylonitrile</subject><subject>Butadiene</subject><subject>Calcium carbonate</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Diffraction</subject><subject>Electron microscopy</subject><subject>Exoskeletons</subject><subject>Fillers</subject><subject>Fourier transforms</subject><subject>Glass transition temperature</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Infrared spectroscopy</subject><subject>Microscopy</subject><subject>Nanocomposites</subject><subject>Network formation</subject><subject>Nitrile rubber</subject><subject>Original Paper</subject><subject>Polymer Sciences</subject><subject>Rubber</subject><subject>Swelling</subject><subject>Tensile strength</subject><subject>Thermal stability</subject><subject>X-rays</subject><issn>1022-9760</issn><issn>1572-8935</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kU9rFjEQhxdRsFa_gKeA562TTbLZ9VZetBYKveg55M9sSd03WSdZod_e2BW8SWAmh-fJZPh13XsOVxxAfywc5lH1MIgehJKyH190F1zpoZ9moV62OwxDP-sRXndvSnkEUEqP00W3nzLZlQWk-AsDSzZl5u3q435unVxOtiKLyWfaGlkbYz09rTnFSnFF5vZqQ8SEjHbnkJjP5y2XWLF8YjeEmNia8w9mK9sob0g1YnnbvVrsWvDd337Zff_y-dvpa393f3N7ur7rvYC59s5yCItzwqsxuFFjGMCGCdAKviDMSytCCyf0LCYugleOB2UB3CDnWQZx2X043m2jf-5YqnnMO6U20gwTSBBSSd2oq4N6sCuamJZcyfp2Ap6jzwmXtqi51nKUkvMJmjAcgqdcCuFiNopnS0-Gg_mThznyMC0P85yHGZskDqk0OD0g_fvLf6zfR0CQSw</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Midhun Dominic, C. D.</creator><creator>Neenu, K. V.</creator><creator>Mohammad Sajadi, S.</creator><creator>Sabura Begum, P. M.</creator><creator>Gopinath, Anu</creator><creator>Ragi, A. S.</creator><creator>Sruthy, S.</creator><creator>Dileep, P.</creator><creator>Joseph, Rani</creator><creator>Ilyas, R. A.</creator><creator>Parameswaranpillai, Jyotishkumar</creator><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0001-9170-6575</orcidid></search><sort><creationdate>20230501</creationdate><title>Coral derived nano calcium carbonate incorporated acrylonitrile butadiene rubber composites: Green look at properties</title><author>Midhun Dominic, C. D. ; Neenu, K. V. ; Mohammad Sajadi, S. ; Sabura Begum, P. M. ; Gopinath, Anu ; Ragi, A. S. ; Sruthy, S. ; Dileep, P. ; Joseph, Rani ; Ilyas, R. A. ; Parameswaranpillai, Jyotishkumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-ba10dfbb3c56db67ed20ad80ea31fe09ffe0373b3793813dc5b1d5a00b24994d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Acrylonitrile</topic><topic>Butadiene</topic><topic>Calcium carbonate</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Diffraction</topic><topic>Electron microscopy</topic><topic>Exoskeletons</topic><topic>Fillers</topic><topic>Fourier transforms</topic><topic>Glass transition temperature</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Infrared spectroscopy</topic><topic>Microscopy</topic><topic>Nanocomposites</topic><topic>Network formation</topic><topic>Nitrile rubber</topic><topic>Original Paper</topic><topic>Polymer Sciences</topic><topic>Rubber</topic><topic>Swelling</topic><topic>Tensile strength</topic><topic>Thermal stability</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Midhun Dominic, C. D.</creatorcontrib><creatorcontrib>Neenu, K. V.</creatorcontrib><creatorcontrib>Mohammad Sajadi, S.</creatorcontrib><creatorcontrib>Sabura Begum, P. M.</creatorcontrib><creatorcontrib>Gopinath, Anu</creatorcontrib><creatorcontrib>Ragi, A. S.</creatorcontrib><creatorcontrib>Sruthy, S.</creatorcontrib><creatorcontrib>Dileep, P.</creatorcontrib><creatorcontrib>Joseph, Rani</creatorcontrib><creatorcontrib>Ilyas, R. A.</creatorcontrib><creatorcontrib>Parameswaranpillai, Jyotishkumar</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of polymer research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Midhun Dominic, C. D.</au><au>Neenu, K. V.</au><au>Mohammad Sajadi, S.</au><au>Sabura Begum, P. M.</au><au>Gopinath, Anu</au><au>Ragi, A. S.</au><au>Sruthy, S.</au><au>Dileep, P.</au><au>Joseph, Rani</au><au>Ilyas, R. A.</au><au>Parameswaranpillai, Jyotishkumar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coral derived nano calcium carbonate incorporated acrylonitrile butadiene rubber composites: Green look at properties</atitle><jtitle>Journal of polymer research</jtitle><stitle>J Polym Res</stitle><date>2023-05-01</date><risdate>2023</risdate><volume>30</volume><issue>5</issue><artnum>176</artnum><issn>1022-9760</issn><eissn>1572-8935</eissn><abstract>Synthesizing nanofillers from bioresources in a cost-effective way is a practical approach to manage waste and circular economy. This paper highlights the preparation of nano-calcium carbonate (NCC) from dead coral exoskeleton by a simple hydrothermal method. The NCC was characterized using Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and BET surface area analysis. NCC with a particle size of 10-20 nm was obtained by this method. A two-roll mill was used to make the nanocomposites of acrylonitrile-butadiene rubber (NBR) with NCC at various filler concentrations (3, 6, and 9 phr). The cure, physico-mechanical, thermal, swelling, and dynamic properties of the composites were investigated. The mechanical and technological properties of NBR were improved by the incorporation of NCC. About 89% increase in tensile strength was observed with the inclusion of 3 phr NCC to the NBR-Gum. The thermal stability of NBR (T max ) was increased from 450 °C to 455 °C by the addition of 3 phr NCC. Furthermore, the 9 phr NCC composite showed an 18% lower swelling index and 27% higher crosslink density compared to NBR-Gum. The glass transition temperature of NBR increases from -4.70 to -3.29 °C with the addition of 3 phr NCC. The highest Payne effect was observed for NBR-NCC 9 phr composite, indicating effective filler-filler network formation.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10965-023-03544-6</doi><orcidid>https://orcid.org/0000-0001-9170-6575</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1022-9760
ispartof Journal of polymer research, 2023-05, Vol.30 (5), Article 176
issn 1022-9760
1572-8935
language eng
recordid cdi_proquest_journals_2804034547
source Springer Nature - Complete Springer Journals
subjects Acrylonitrile
Butadiene
Calcium carbonate
Characterization and Evaluation of Materials
Chemistry
Chemistry and Materials Science
Diffraction
Electron microscopy
Exoskeletons
Fillers
Fourier transforms
Glass transition temperature
Industrial Chemistry/Chemical Engineering
Infrared spectroscopy
Microscopy
Nanocomposites
Network formation
Nitrile rubber
Original Paper
Polymer Sciences
Rubber
Swelling
Tensile strength
Thermal stability
X-rays
title Coral derived nano calcium carbonate incorporated acrylonitrile butadiene rubber composites: Green look at properties
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T20%3A19%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coral%20derived%20nano%20calcium%20carbonate%20incorporated%20acrylonitrile%20butadiene%20rubber%20composites:%20Green%20look%20at%20properties&rft.jtitle=Journal%20of%20polymer%20research&rft.au=Midhun%20Dominic,%20C.%20D.&rft.date=2023-05-01&rft.volume=30&rft.issue=5&rft.artnum=176&rft.issn=1022-9760&rft.eissn=1572-8935&rft_id=info:doi/10.1007/s10965-023-03544-6&rft_dat=%3Cgale_proqu%3EA746441180%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2804034547&rft_id=info:pmid/&rft_galeid=A746441180&rfr_iscdi=true