Coral derived nano calcium carbonate incorporated acrylonitrile butadiene rubber composites: Green look at properties
Synthesizing nanofillers from bioresources in a cost-effective way is a practical approach to manage waste and circular economy. This paper highlights the preparation of nano-calcium carbonate (NCC) from dead coral exoskeleton by a simple hydrothermal method. The NCC was characterized using Fourier-...
Gespeichert in:
Veröffentlicht in: | Journal of polymer research 2023-05, Vol.30 (5), Article 176 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | |
container_title | Journal of polymer research |
container_volume | 30 |
creator | Midhun Dominic, C. D. Neenu, K. V. Mohammad Sajadi, S. Sabura Begum, P. M. Gopinath, Anu Ragi, A. S. Sruthy, S. Dileep, P. Joseph, Rani Ilyas, R. A. Parameswaranpillai, Jyotishkumar |
description | Synthesizing nanofillers from bioresources in a cost-effective way is a practical approach to manage waste and circular economy. This paper highlights the preparation of nano-calcium carbonate (NCC) from dead coral exoskeleton by a simple hydrothermal method. The NCC was characterized using Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and BET surface area analysis. NCC with a particle size of 10-20 nm was obtained by this method. A two-roll mill was used to make the nanocomposites of acrylonitrile-butadiene rubber (NBR) with NCC at various filler concentrations (3, 6, and 9 phr). The cure, physico-mechanical, thermal, swelling, and dynamic properties of the composites were investigated. The mechanical and technological properties of NBR were improved by the incorporation of NCC. About 89% increase in tensile strength was observed with the inclusion of 3 phr NCC to the NBR-Gum. The thermal stability of NBR (T
max
) was increased from 450 °C to 455 °C by the addition of 3 phr NCC. Furthermore, the 9 phr NCC composite showed an 18% lower swelling index and 27% higher crosslink density compared to NBR-Gum. The glass transition temperature of NBR increases from -4.70 to -3.29 °C with the addition of 3 phr NCC. The highest Payne effect was observed for NBR-NCC 9 phr composite, indicating effective filler-filler network formation. |
doi_str_mv | 10.1007/s10965-023-03544-6 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2804034547</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A746441180</galeid><sourcerecordid>A746441180</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-ba10dfbb3c56db67ed20ad80ea31fe09ffe0373b3793813dc5b1d5a00b24994d3</originalsourceid><addsrcrecordid>eNp9kU9rFjEQhxdRsFa_gKeA562TTbLZ9VZetBYKveg55M9sSd03WSdZod_e2BW8SWAmh-fJZPh13XsOVxxAfywc5lH1MIgehJKyH190F1zpoZ9moV62OwxDP-sRXndvSnkEUEqP00W3nzLZlQWk-AsDSzZl5u3q435unVxOtiKLyWfaGlkbYz09rTnFSnFF5vZqQ8SEjHbnkJjP5y2XWLF8YjeEmNia8w9mK9sob0g1YnnbvVrsWvDd337Zff_y-dvpa393f3N7ur7rvYC59s5yCItzwqsxuFFjGMCGCdAKviDMSytCCyf0LCYugleOB2UB3CDnWQZx2X043m2jf-5YqnnMO6U20gwTSBBSSd2oq4N6sCuamJZcyfp2Ap6jzwmXtqi51nKUkvMJmjAcgqdcCuFiNopnS0-Gg_mThznyMC0P85yHGZskDqk0OD0g_fvLf6zfR0CQSw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2804034547</pqid></control><display><type>article</type><title>Coral derived nano calcium carbonate incorporated acrylonitrile butadiene rubber composites: Green look at properties</title><source>Springer Nature - Complete Springer Journals</source><creator>Midhun Dominic, C. D. ; Neenu, K. V. ; Mohammad Sajadi, S. ; Sabura Begum, P. M. ; Gopinath, Anu ; Ragi, A. S. ; Sruthy, S. ; Dileep, P. ; Joseph, Rani ; Ilyas, R. A. ; Parameswaranpillai, Jyotishkumar</creator><creatorcontrib>Midhun Dominic, C. D. ; Neenu, K. V. ; Mohammad Sajadi, S. ; Sabura Begum, P. M. ; Gopinath, Anu ; Ragi, A. S. ; Sruthy, S. ; Dileep, P. ; Joseph, Rani ; Ilyas, R. A. ; Parameswaranpillai, Jyotishkumar</creatorcontrib><description>Synthesizing nanofillers from bioresources in a cost-effective way is a practical approach to manage waste and circular economy. This paper highlights the preparation of nano-calcium carbonate (NCC) from dead coral exoskeleton by a simple hydrothermal method. The NCC was characterized using Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and BET surface area analysis. NCC with a particle size of 10-20 nm was obtained by this method. A two-roll mill was used to make the nanocomposites of acrylonitrile-butadiene rubber (NBR) with NCC at various filler concentrations (3, 6, and 9 phr). The cure, physico-mechanical, thermal, swelling, and dynamic properties of the composites were investigated. The mechanical and technological properties of NBR were improved by the incorporation of NCC. About 89% increase in tensile strength was observed with the inclusion of 3 phr NCC to the NBR-Gum. The thermal stability of NBR (T
max
) was increased from 450 °C to 455 °C by the addition of 3 phr NCC. Furthermore, the 9 phr NCC composite showed an 18% lower swelling index and 27% higher crosslink density compared to NBR-Gum. The glass transition temperature of NBR increases from -4.70 to -3.29 °C with the addition of 3 phr NCC. The highest Payne effect was observed for NBR-NCC 9 phr composite, indicating effective filler-filler network formation.</description><identifier>ISSN: 1022-9760</identifier><identifier>EISSN: 1572-8935</identifier><identifier>DOI: 10.1007/s10965-023-03544-6</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Acrylonitrile ; Butadiene ; Calcium carbonate ; Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Diffraction ; Electron microscopy ; Exoskeletons ; Fillers ; Fourier transforms ; Glass transition temperature ; Industrial Chemistry/Chemical Engineering ; Infrared spectroscopy ; Microscopy ; Nanocomposites ; Network formation ; Nitrile rubber ; Original Paper ; Polymer Sciences ; Rubber ; Swelling ; Tensile strength ; Thermal stability ; X-rays</subject><ispartof>Journal of polymer research, 2023-05, Vol.30 (5), Article 176</ispartof><rights>The Polymer Society, Taipei 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>COPYRIGHT 2023 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c309t-ba10dfbb3c56db67ed20ad80ea31fe09ffe0373b3793813dc5b1d5a00b24994d3</cites><orcidid>0000-0001-9170-6575</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10965-023-03544-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10965-023-03544-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Midhun Dominic, C. D.</creatorcontrib><creatorcontrib>Neenu, K. V.</creatorcontrib><creatorcontrib>Mohammad Sajadi, S.</creatorcontrib><creatorcontrib>Sabura Begum, P. M.</creatorcontrib><creatorcontrib>Gopinath, Anu</creatorcontrib><creatorcontrib>Ragi, A. S.</creatorcontrib><creatorcontrib>Sruthy, S.</creatorcontrib><creatorcontrib>Dileep, P.</creatorcontrib><creatorcontrib>Joseph, Rani</creatorcontrib><creatorcontrib>Ilyas, R. A.</creatorcontrib><creatorcontrib>Parameswaranpillai, Jyotishkumar</creatorcontrib><title>Coral derived nano calcium carbonate incorporated acrylonitrile butadiene rubber composites: Green look at properties</title><title>Journal of polymer research</title><addtitle>J Polym Res</addtitle><description>Synthesizing nanofillers from bioresources in a cost-effective way is a practical approach to manage waste and circular economy. This paper highlights the preparation of nano-calcium carbonate (NCC) from dead coral exoskeleton by a simple hydrothermal method. The NCC was characterized using Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and BET surface area analysis. NCC with a particle size of 10-20 nm was obtained by this method. A two-roll mill was used to make the nanocomposites of acrylonitrile-butadiene rubber (NBR) with NCC at various filler concentrations (3, 6, and 9 phr). The cure, physico-mechanical, thermal, swelling, and dynamic properties of the composites were investigated. The mechanical and technological properties of NBR were improved by the incorporation of NCC. About 89% increase in tensile strength was observed with the inclusion of 3 phr NCC to the NBR-Gum. The thermal stability of NBR (T
max
) was increased from 450 °C to 455 °C by the addition of 3 phr NCC. Furthermore, the 9 phr NCC composite showed an 18% lower swelling index and 27% higher crosslink density compared to NBR-Gum. The glass transition temperature of NBR increases from -4.70 to -3.29 °C with the addition of 3 phr NCC. The highest Payne effect was observed for NBR-NCC 9 phr composite, indicating effective filler-filler network formation.</description><subject>Acrylonitrile</subject><subject>Butadiene</subject><subject>Calcium carbonate</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Diffraction</subject><subject>Electron microscopy</subject><subject>Exoskeletons</subject><subject>Fillers</subject><subject>Fourier transforms</subject><subject>Glass transition temperature</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Infrared spectroscopy</subject><subject>Microscopy</subject><subject>Nanocomposites</subject><subject>Network formation</subject><subject>Nitrile rubber</subject><subject>Original Paper</subject><subject>Polymer Sciences</subject><subject>Rubber</subject><subject>Swelling</subject><subject>Tensile strength</subject><subject>Thermal stability</subject><subject>X-rays</subject><issn>1022-9760</issn><issn>1572-8935</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kU9rFjEQhxdRsFa_gKeA562TTbLZ9VZetBYKveg55M9sSd03WSdZod_e2BW8SWAmh-fJZPh13XsOVxxAfywc5lH1MIgehJKyH190F1zpoZ9moV62OwxDP-sRXndvSnkEUEqP00W3nzLZlQWk-AsDSzZl5u3q435unVxOtiKLyWfaGlkbYz09rTnFSnFF5vZqQ8SEjHbnkJjP5y2XWLF8YjeEmNia8w9mK9sob0g1YnnbvVrsWvDd337Zff_y-dvpa393f3N7ur7rvYC59s5yCItzwqsxuFFjGMCGCdAKviDMSytCCyf0LCYugleOB2UB3CDnWQZx2X043m2jf-5YqnnMO6U20gwTSBBSSd2oq4N6sCuamJZcyfp2Ap6jzwmXtqi51nKUkvMJmjAcgqdcCuFiNopnS0-Gg_mThznyMC0P85yHGZskDqk0OD0g_fvLf6zfR0CQSw</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Midhun Dominic, C. D.</creator><creator>Neenu, K. V.</creator><creator>Mohammad Sajadi, S.</creator><creator>Sabura Begum, P. M.</creator><creator>Gopinath, Anu</creator><creator>Ragi, A. S.</creator><creator>Sruthy, S.</creator><creator>Dileep, P.</creator><creator>Joseph, Rani</creator><creator>Ilyas, R. A.</creator><creator>Parameswaranpillai, Jyotishkumar</creator><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0001-9170-6575</orcidid></search><sort><creationdate>20230501</creationdate><title>Coral derived nano calcium carbonate incorporated acrylonitrile butadiene rubber composites: Green look at properties</title><author>Midhun Dominic, C. D. ; Neenu, K. V. ; Mohammad Sajadi, S. ; Sabura Begum, P. M. ; Gopinath, Anu ; Ragi, A. S. ; Sruthy, S. ; Dileep, P. ; Joseph, Rani ; Ilyas, R. A. ; Parameswaranpillai, Jyotishkumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-ba10dfbb3c56db67ed20ad80ea31fe09ffe0373b3793813dc5b1d5a00b24994d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Acrylonitrile</topic><topic>Butadiene</topic><topic>Calcium carbonate</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Diffraction</topic><topic>Electron microscopy</topic><topic>Exoskeletons</topic><topic>Fillers</topic><topic>Fourier transforms</topic><topic>Glass transition temperature</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Infrared spectroscopy</topic><topic>Microscopy</topic><topic>Nanocomposites</topic><topic>Network formation</topic><topic>Nitrile rubber</topic><topic>Original Paper</topic><topic>Polymer Sciences</topic><topic>Rubber</topic><topic>Swelling</topic><topic>Tensile strength</topic><topic>Thermal stability</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Midhun Dominic, C. D.</creatorcontrib><creatorcontrib>Neenu, K. V.</creatorcontrib><creatorcontrib>Mohammad Sajadi, S.</creatorcontrib><creatorcontrib>Sabura Begum, P. M.</creatorcontrib><creatorcontrib>Gopinath, Anu</creatorcontrib><creatorcontrib>Ragi, A. S.</creatorcontrib><creatorcontrib>Sruthy, S.</creatorcontrib><creatorcontrib>Dileep, P.</creatorcontrib><creatorcontrib>Joseph, Rani</creatorcontrib><creatorcontrib>Ilyas, R. A.</creatorcontrib><creatorcontrib>Parameswaranpillai, Jyotishkumar</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of polymer research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Midhun Dominic, C. D.</au><au>Neenu, K. V.</au><au>Mohammad Sajadi, S.</au><au>Sabura Begum, P. M.</au><au>Gopinath, Anu</au><au>Ragi, A. S.</au><au>Sruthy, S.</au><au>Dileep, P.</au><au>Joseph, Rani</au><au>Ilyas, R. A.</au><au>Parameswaranpillai, Jyotishkumar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coral derived nano calcium carbonate incorporated acrylonitrile butadiene rubber composites: Green look at properties</atitle><jtitle>Journal of polymer research</jtitle><stitle>J Polym Res</stitle><date>2023-05-01</date><risdate>2023</risdate><volume>30</volume><issue>5</issue><artnum>176</artnum><issn>1022-9760</issn><eissn>1572-8935</eissn><abstract>Synthesizing nanofillers from bioresources in a cost-effective way is a practical approach to manage waste and circular economy. This paper highlights the preparation of nano-calcium carbonate (NCC) from dead coral exoskeleton by a simple hydrothermal method. The NCC was characterized using Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and BET surface area analysis. NCC with a particle size of 10-20 nm was obtained by this method. A two-roll mill was used to make the nanocomposites of acrylonitrile-butadiene rubber (NBR) with NCC at various filler concentrations (3, 6, and 9 phr). The cure, physico-mechanical, thermal, swelling, and dynamic properties of the composites were investigated. The mechanical and technological properties of NBR were improved by the incorporation of NCC. About 89% increase in tensile strength was observed with the inclusion of 3 phr NCC to the NBR-Gum. The thermal stability of NBR (T
max
) was increased from 450 °C to 455 °C by the addition of 3 phr NCC. Furthermore, the 9 phr NCC composite showed an 18% lower swelling index and 27% higher crosslink density compared to NBR-Gum. The glass transition temperature of NBR increases from -4.70 to -3.29 °C with the addition of 3 phr NCC. The highest Payne effect was observed for NBR-NCC 9 phr composite, indicating effective filler-filler network formation.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10965-023-03544-6</doi><orcidid>https://orcid.org/0000-0001-9170-6575</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1022-9760 |
ispartof | Journal of polymer research, 2023-05, Vol.30 (5), Article 176 |
issn | 1022-9760 1572-8935 |
language | eng |
recordid | cdi_proquest_journals_2804034547 |
source | Springer Nature - Complete Springer Journals |
subjects | Acrylonitrile Butadiene Calcium carbonate Characterization and Evaluation of Materials Chemistry Chemistry and Materials Science Diffraction Electron microscopy Exoskeletons Fillers Fourier transforms Glass transition temperature Industrial Chemistry/Chemical Engineering Infrared spectroscopy Microscopy Nanocomposites Network formation Nitrile rubber Original Paper Polymer Sciences Rubber Swelling Tensile strength Thermal stability X-rays |
title | Coral derived nano calcium carbonate incorporated acrylonitrile butadiene rubber composites: Green look at properties |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T20%3A19%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coral%20derived%20nano%20calcium%20carbonate%20incorporated%20acrylonitrile%20butadiene%20rubber%20composites:%20Green%20look%20at%20properties&rft.jtitle=Journal%20of%20polymer%20research&rft.au=Midhun%20Dominic,%20C.%20D.&rft.date=2023-05-01&rft.volume=30&rft.issue=5&rft.artnum=176&rft.issn=1022-9760&rft.eissn=1572-8935&rft_id=info:doi/10.1007/s10965-023-03544-6&rft_dat=%3Cgale_proqu%3EA746441180%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2804034547&rft_id=info:pmid/&rft_galeid=A746441180&rfr_iscdi=true |