Nearly optimal stochastic approximation for online principal subspace estimation

Principal component analysis (PCA) has been widely used in analyzing high-dimensional data. It converts a set of observed data points of possibly correlated variables into a set of linearly uncorrelated variables via an orthogonal transformation. To handle streaming data and reduce the complexities...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science China. Mathematics 2023-05, Vol.66 (5), p.1087-1122
Hauptverfasser: Liang, Xin, Guo, Zhen-Chen, Wang, Li, Li, Ren-Cang, Lin, Wen-Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1122
container_issue 5
container_start_page 1087
container_title Science China. Mathematics
container_volume 66
creator Liang, Xin
Guo, Zhen-Chen
Wang, Li
Li, Ren-Cang
Lin, Wen-Wei
description Principal component analysis (PCA) has been widely used in analyzing high-dimensional data. It converts a set of observed data points of possibly correlated variables into a set of linearly uncorrelated variables via an orthogonal transformation. To handle streaming data and reduce the complexities of PCA, (subspace) online PCA iterations were proposed to iteratively update the orthogonal transformation by taking one observed data point at a time. Existing works on the convergence of (subspace) online PCA iterations mostly focus on the case where the samples are almost surely uniformly bounded. In this paper, we analyze the convergence of a subspace online PCA iteration under more practical assumption and obtain a nearly optimal finite-sample error bound. Our convergence rate almost matches the minimax information lower bound. We prove that the convergence is nearly global in the sense that the subspace online PCA iteration is convergent with high probability for random initial guesses. This work also leads to a simpler proof of the recent work on analyzing online PCA for the first principal component only.
doi_str_mv 10.1007/s11425-021-1972-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2803474174</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2803474174</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-2da7c8731c04e67bcd11527359899dc425b7b4a76d895ba327f3a1459134e4523</originalsourceid><addsrcrecordid>eNp1UE1LxDAQDaLgsu4P8BbwHM3ko2mOsvixsKgHPYc0TbVLt6lJF9x_b0oXPDmHmWF4783MQ-ga6C1Qqu4SgGCSUAYEtGJEnqEFlIUmObHz3BdKEMVKfolWKe1oDq6pUHyB3l68jd0Rh2Fs97bDaQzuy6axddgOQww_eTq2ocdNiDj0Xdt7PMS2d-0woQ9VGqzz2KfxBLxCF43tkl-d6hJ9PD68r5_J9vVps77fEsehGAmrrXKl4uCo8IWqXA0gmeJSl1rXLr9TqUpYVdSllpXlTDXcgpAauPBCMr5EN7NuPvL7kPebXTjEPq80rKRcKAFKZBTMKBdDStE3Jh-_t_FogJrJOzN7Z7J3ZvLOyMxhMydNj376-Kf8P-kXsw1xTQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2803474174</pqid></control><display><type>article</type><title>Nearly optimal stochastic approximation for online principal subspace estimation</title><source>Springer Nature - Complete Springer Journals</source><source>Alma/SFX Local Collection</source><creator>Liang, Xin ; Guo, Zhen-Chen ; Wang, Li ; Li, Ren-Cang ; Lin, Wen-Wei</creator><creatorcontrib>Liang, Xin ; Guo, Zhen-Chen ; Wang, Li ; Li, Ren-Cang ; Lin, Wen-Wei</creatorcontrib><description>Principal component analysis (PCA) has been widely used in analyzing high-dimensional data. It converts a set of observed data points of possibly correlated variables into a set of linearly uncorrelated variables via an orthogonal transformation. To handle streaming data and reduce the complexities of PCA, (subspace) online PCA iterations were proposed to iteratively update the orthogonal transformation by taking one observed data point at a time. Existing works on the convergence of (subspace) online PCA iterations mostly focus on the case where the samples are almost surely uniformly bounded. In this paper, we analyze the convergence of a subspace online PCA iteration under more practical assumption and obtain a nearly optimal finite-sample error bound. Our convergence rate almost matches the minimax information lower bound. We prove that the convergence is nearly global in the sense that the subspace online PCA iteration is convergent with high probability for random initial guesses. This work also leads to a simpler proof of the recent work on analyzing online PCA for the first principal component only.</description><identifier>ISSN: 1674-7283</identifier><identifier>EISSN: 1869-1862</identifier><identifier>DOI: 10.1007/s11425-021-1972-5</identifier><language>eng</language><publisher>Beijing: Science China Press</publisher><subject>Applications of Mathematics ; Convergence ; Data points ; Dimensional analysis ; Lower bounds ; Mathematics ; Mathematics and Statistics ; Minimax technique ; Principal components analysis ; Sampling error ; Subspaces</subject><ispartof>Science China. Mathematics, 2023-05, Vol.66 (5), p.1087-1122</ispartof><rights>Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2022</rights><rights>Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-2da7c8731c04e67bcd11527359899dc425b7b4a76d895ba327f3a1459134e4523</citedby><cites>FETCH-LOGICAL-c316t-2da7c8731c04e67bcd11527359899dc425b7b4a76d895ba327f3a1459134e4523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11425-021-1972-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11425-021-1972-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Liang, Xin</creatorcontrib><creatorcontrib>Guo, Zhen-Chen</creatorcontrib><creatorcontrib>Wang, Li</creatorcontrib><creatorcontrib>Li, Ren-Cang</creatorcontrib><creatorcontrib>Lin, Wen-Wei</creatorcontrib><title>Nearly optimal stochastic approximation for online principal subspace estimation</title><title>Science China. Mathematics</title><addtitle>Sci. China Math</addtitle><description>Principal component analysis (PCA) has been widely used in analyzing high-dimensional data. It converts a set of observed data points of possibly correlated variables into a set of linearly uncorrelated variables via an orthogonal transformation. To handle streaming data and reduce the complexities of PCA, (subspace) online PCA iterations were proposed to iteratively update the orthogonal transformation by taking one observed data point at a time. Existing works on the convergence of (subspace) online PCA iterations mostly focus on the case where the samples are almost surely uniformly bounded. In this paper, we analyze the convergence of a subspace online PCA iteration under more practical assumption and obtain a nearly optimal finite-sample error bound. Our convergence rate almost matches the minimax information lower bound. We prove that the convergence is nearly global in the sense that the subspace online PCA iteration is convergent with high probability for random initial guesses. This work also leads to a simpler proof of the recent work on analyzing online PCA for the first principal component only.</description><subject>Applications of Mathematics</subject><subject>Convergence</subject><subject>Data points</subject><subject>Dimensional analysis</subject><subject>Lower bounds</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Minimax technique</subject><subject>Principal components analysis</subject><subject>Sampling error</subject><subject>Subspaces</subject><issn>1674-7283</issn><issn>1869-1862</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1UE1LxDAQDaLgsu4P8BbwHM3ko2mOsvixsKgHPYc0TbVLt6lJF9x_b0oXPDmHmWF4783MQ-ga6C1Qqu4SgGCSUAYEtGJEnqEFlIUmObHz3BdKEMVKfolWKe1oDq6pUHyB3l68jd0Rh2Fs97bDaQzuy6axddgOQww_eTq2ocdNiDj0Xdt7PMS2d-0woQ9VGqzz2KfxBLxCF43tkl-d6hJ9PD68r5_J9vVps77fEsehGAmrrXKl4uCo8IWqXA0gmeJSl1rXLr9TqUpYVdSllpXlTDXcgpAauPBCMr5EN7NuPvL7kPebXTjEPq80rKRcKAFKZBTMKBdDStE3Jh-_t_FogJrJOzN7Z7J3ZvLOyMxhMydNj376-Kf8P-kXsw1xTQ</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Liang, Xin</creator><creator>Guo, Zhen-Chen</creator><creator>Wang, Li</creator><creator>Li, Ren-Cang</creator><creator>Lin, Wen-Wei</creator><general>Science China Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230501</creationdate><title>Nearly optimal stochastic approximation for online principal subspace estimation</title><author>Liang, Xin ; Guo, Zhen-Chen ; Wang, Li ; Li, Ren-Cang ; Lin, Wen-Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-2da7c8731c04e67bcd11527359899dc425b7b4a76d895ba327f3a1459134e4523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Applications of Mathematics</topic><topic>Convergence</topic><topic>Data points</topic><topic>Dimensional analysis</topic><topic>Lower bounds</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Minimax technique</topic><topic>Principal components analysis</topic><topic>Sampling error</topic><topic>Subspaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, Xin</creatorcontrib><creatorcontrib>Guo, Zhen-Chen</creatorcontrib><creatorcontrib>Wang, Li</creatorcontrib><creatorcontrib>Li, Ren-Cang</creatorcontrib><creatorcontrib>Lin, Wen-Wei</creatorcontrib><collection>CrossRef</collection><jtitle>Science China. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liang, Xin</au><au>Guo, Zhen-Chen</au><au>Wang, Li</au><au>Li, Ren-Cang</au><au>Lin, Wen-Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nearly optimal stochastic approximation for online principal subspace estimation</atitle><jtitle>Science China. Mathematics</jtitle><stitle>Sci. China Math</stitle><date>2023-05-01</date><risdate>2023</risdate><volume>66</volume><issue>5</issue><spage>1087</spage><epage>1122</epage><pages>1087-1122</pages><issn>1674-7283</issn><eissn>1869-1862</eissn><abstract>Principal component analysis (PCA) has been widely used in analyzing high-dimensional data. It converts a set of observed data points of possibly correlated variables into a set of linearly uncorrelated variables via an orthogonal transformation. To handle streaming data and reduce the complexities of PCA, (subspace) online PCA iterations were proposed to iteratively update the orthogonal transformation by taking one observed data point at a time. Existing works on the convergence of (subspace) online PCA iterations mostly focus on the case where the samples are almost surely uniformly bounded. In this paper, we analyze the convergence of a subspace online PCA iteration under more practical assumption and obtain a nearly optimal finite-sample error bound. Our convergence rate almost matches the minimax information lower bound. We prove that the convergence is nearly global in the sense that the subspace online PCA iteration is convergent with high probability for random initial guesses. This work also leads to a simpler proof of the recent work on analyzing online PCA for the first principal component only.</abstract><cop>Beijing</cop><pub>Science China Press</pub><doi>10.1007/s11425-021-1972-5</doi><tpages>36</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1674-7283
ispartof Science China. Mathematics, 2023-05, Vol.66 (5), p.1087-1122
issn 1674-7283
1869-1862
language eng
recordid cdi_proquest_journals_2803474174
source Springer Nature - Complete Springer Journals; Alma/SFX Local Collection
subjects Applications of Mathematics
Convergence
Data points
Dimensional analysis
Lower bounds
Mathematics
Mathematics and Statistics
Minimax technique
Principal components analysis
Sampling error
Subspaces
title Nearly optimal stochastic approximation for online principal subspace estimation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T18%3A05%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nearly%20optimal%20stochastic%20approximation%20for%20online%20principal%20subspace%20estimation&rft.jtitle=Science%20China.%20Mathematics&rft.au=Liang,%20Xin&rft.date=2023-05-01&rft.volume=66&rft.issue=5&rft.spage=1087&rft.epage=1122&rft.pages=1087-1122&rft.issn=1674-7283&rft.eissn=1869-1862&rft_id=info:doi/10.1007/s11425-021-1972-5&rft_dat=%3Cproquest_cross%3E2803474174%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2803474174&rft_id=info:pmid/&rfr_iscdi=true