Nearly optimal stochastic approximation for online principal subspace estimation
Principal component analysis (PCA) has been widely used in analyzing high-dimensional data. It converts a set of observed data points of possibly correlated variables into a set of linearly uncorrelated variables via an orthogonal transformation. To handle streaming data and reduce the complexities...
Gespeichert in:
Veröffentlicht in: | Science China. Mathematics 2023-05, Vol.66 (5), p.1087-1122 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1122 |
---|---|
container_issue | 5 |
container_start_page | 1087 |
container_title | Science China. Mathematics |
container_volume | 66 |
creator | Liang, Xin Guo, Zhen-Chen Wang, Li Li, Ren-Cang Lin, Wen-Wei |
description | Principal component analysis (PCA) has been widely used in analyzing high-dimensional data. It converts a set of observed data points of possibly correlated variables into a set of linearly uncorrelated variables via an orthogonal transformation. To handle streaming data and reduce the complexities of PCA, (subspace) online PCA iterations were proposed to iteratively update the orthogonal transformation by taking one observed data point at a time. Existing works on the convergence of (subspace) online PCA iterations mostly focus on the case where the samples are almost surely uniformly bounded. In this paper, we analyze the convergence of a subspace online PCA iteration under more practical assumption and obtain a nearly optimal finite-sample error bound. Our convergence rate almost matches the minimax information lower bound. We prove that the convergence is nearly global in the sense that the subspace online PCA iteration is convergent with high probability for random initial guesses. This work also leads to a simpler proof of the recent work on analyzing online PCA for the first principal component only. |
doi_str_mv | 10.1007/s11425-021-1972-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2803474174</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2803474174</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-2da7c8731c04e67bcd11527359899dc425b7b4a76d895ba327f3a1459134e4523</originalsourceid><addsrcrecordid>eNp1UE1LxDAQDaLgsu4P8BbwHM3ko2mOsvixsKgHPYc0TbVLt6lJF9x_b0oXPDmHmWF4783MQ-ga6C1Qqu4SgGCSUAYEtGJEnqEFlIUmObHz3BdKEMVKfolWKe1oDq6pUHyB3l68jd0Rh2Fs97bDaQzuy6axddgOQww_eTq2ocdNiDj0Xdt7PMS2d-0woQ9VGqzz2KfxBLxCF43tkl-d6hJ9PD68r5_J9vVps77fEsehGAmrrXKl4uCo8IWqXA0gmeJSl1rXLr9TqUpYVdSllpXlTDXcgpAauPBCMr5EN7NuPvL7kPebXTjEPq80rKRcKAFKZBTMKBdDStE3Jh-_t_FogJrJOzN7Z7J3ZvLOyMxhMydNj376-Kf8P-kXsw1xTQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2803474174</pqid></control><display><type>article</type><title>Nearly optimal stochastic approximation for online principal subspace estimation</title><source>Springer Nature - Complete Springer Journals</source><source>Alma/SFX Local Collection</source><creator>Liang, Xin ; Guo, Zhen-Chen ; Wang, Li ; Li, Ren-Cang ; Lin, Wen-Wei</creator><creatorcontrib>Liang, Xin ; Guo, Zhen-Chen ; Wang, Li ; Li, Ren-Cang ; Lin, Wen-Wei</creatorcontrib><description>Principal component analysis (PCA) has been widely used in analyzing high-dimensional data. It converts a set of observed data points of possibly correlated variables into a set of linearly uncorrelated variables via an orthogonal transformation. To handle streaming data and reduce the complexities of PCA, (subspace) online PCA iterations were proposed to iteratively update the orthogonal transformation by taking one observed data point at a time. Existing works on the convergence of (subspace) online PCA iterations mostly focus on the case where the samples are almost surely uniformly bounded. In this paper, we analyze the convergence of a subspace online PCA iteration under more practical assumption and obtain a nearly optimal finite-sample error bound. Our convergence rate almost matches the minimax information lower bound. We prove that the convergence is nearly global in the sense that the subspace online PCA iteration is convergent with high probability for random initial guesses. This work also leads to a simpler proof of the recent work on analyzing online PCA for the first principal component only.</description><identifier>ISSN: 1674-7283</identifier><identifier>EISSN: 1869-1862</identifier><identifier>DOI: 10.1007/s11425-021-1972-5</identifier><language>eng</language><publisher>Beijing: Science China Press</publisher><subject>Applications of Mathematics ; Convergence ; Data points ; Dimensional analysis ; Lower bounds ; Mathematics ; Mathematics and Statistics ; Minimax technique ; Principal components analysis ; Sampling error ; Subspaces</subject><ispartof>Science China. Mathematics, 2023-05, Vol.66 (5), p.1087-1122</ispartof><rights>Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2022</rights><rights>Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-2da7c8731c04e67bcd11527359899dc425b7b4a76d895ba327f3a1459134e4523</citedby><cites>FETCH-LOGICAL-c316t-2da7c8731c04e67bcd11527359899dc425b7b4a76d895ba327f3a1459134e4523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11425-021-1972-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11425-021-1972-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Liang, Xin</creatorcontrib><creatorcontrib>Guo, Zhen-Chen</creatorcontrib><creatorcontrib>Wang, Li</creatorcontrib><creatorcontrib>Li, Ren-Cang</creatorcontrib><creatorcontrib>Lin, Wen-Wei</creatorcontrib><title>Nearly optimal stochastic approximation for online principal subspace estimation</title><title>Science China. Mathematics</title><addtitle>Sci. China Math</addtitle><description>Principal component analysis (PCA) has been widely used in analyzing high-dimensional data. It converts a set of observed data points of possibly correlated variables into a set of linearly uncorrelated variables via an orthogonal transformation. To handle streaming data and reduce the complexities of PCA, (subspace) online PCA iterations were proposed to iteratively update the orthogonal transformation by taking one observed data point at a time. Existing works on the convergence of (subspace) online PCA iterations mostly focus on the case where the samples are almost surely uniformly bounded. In this paper, we analyze the convergence of a subspace online PCA iteration under more practical assumption and obtain a nearly optimal finite-sample error bound. Our convergence rate almost matches the minimax information lower bound. We prove that the convergence is nearly global in the sense that the subspace online PCA iteration is convergent with high probability for random initial guesses. This work also leads to a simpler proof of the recent work on analyzing online PCA for the first principal component only.</description><subject>Applications of Mathematics</subject><subject>Convergence</subject><subject>Data points</subject><subject>Dimensional analysis</subject><subject>Lower bounds</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Minimax technique</subject><subject>Principal components analysis</subject><subject>Sampling error</subject><subject>Subspaces</subject><issn>1674-7283</issn><issn>1869-1862</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1UE1LxDAQDaLgsu4P8BbwHM3ko2mOsvixsKgHPYc0TbVLt6lJF9x_b0oXPDmHmWF4783MQ-ga6C1Qqu4SgGCSUAYEtGJEnqEFlIUmObHz3BdKEMVKfolWKe1oDq6pUHyB3l68jd0Rh2Fs97bDaQzuy6axddgOQww_eTq2ocdNiDj0Xdt7PMS2d-0woQ9VGqzz2KfxBLxCF43tkl-d6hJ9PD68r5_J9vVps77fEsehGAmrrXKl4uCo8IWqXA0gmeJSl1rXLr9TqUpYVdSllpXlTDXcgpAauPBCMr5EN7NuPvL7kPebXTjEPq80rKRcKAFKZBTMKBdDStE3Jh-_t_FogJrJOzN7Z7J3ZvLOyMxhMydNj376-Kf8P-kXsw1xTQ</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Liang, Xin</creator><creator>Guo, Zhen-Chen</creator><creator>Wang, Li</creator><creator>Li, Ren-Cang</creator><creator>Lin, Wen-Wei</creator><general>Science China Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230501</creationdate><title>Nearly optimal stochastic approximation for online principal subspace estimation</title><author>Liang, Xin ; Guo, Zhen-Chen ; Wang, Li ; Li, Ren-Cang ; Lin, Wen-Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-2da7c8731c04e67bcd11527359899dc425b7b4a76d895ba327f3a1459134e4523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Applications of Mathematics</topic><topic>Convergence</topic><topic>Data points</topic><topic>Dimensional analysis</topic><topic>Lower bounds</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Minimax technique</topic><topic>Principal components analysis</topic><topic>Sampling error</topic><topic>Subspaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, Xin</creatorcontrib><creatorcontrib>Guo, Zhen-Chen</creatorcontrib><creatorcontrib>Wang, Li</creatorcontrib><creatorcontrib>Li, Ren-Cang</creatorcontrib><creatorcontrib>Lin, Wen-Wei</creatorcontrib><collection>CrossRef</collection><jtitle>Science China. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liang, Xin</au><au>Guo, Zhen-Chen</au><au>Wang, Li</au><au>Li, Ren-Cang</au><au>Lin, Wen-Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nearly optimal stochastic approximation for online principal subspace estimation</atitle><jtitle>Science China. Mathematics</jtitle><stitle>Sci. China Math</stitle><date>2023-05-01</date><risdate>2023</risdate><volume>66</volume><issue>5</issue><spage>1087</spage><epage>1122</epage><pages>1087-1122</pages><issn>1674-7283</issn><eissn>1869-1862</eissn><abstract>Principal component analysis (PCA) has been widely used in analyzing high-dimensional data. It converts a set of observed data points of possibly correlated variables into a set of linearly uncorrelated variables via an orthogonal transformation. To handle streaming data and reduce the complexities of PCA, (subspace) online PCA iterations were proposed to iteratively update the orthogonal transformation by taking one observed data point at a time. Existing works on the convergence of (subspace) online PCA iterations mostly focus on the case where the samples are almost surely uniformly bounded. In this paper, we analyze the convergence of a subspace online PCA iteration under more practical assumption and obtain a nearly optimal finite-sample error bound. Our convergence rate almost matches the minimax information lower bound. We prove that the convergence is nearly global in the sense that the subspace online PCA iteration is convergent with high probability for random initial guesses. This work also leads to a simpler proof of the recent work on analyzing online PCA for the first principal component only.</abstract><cop>Beijing</cop><pub>Science China Press</pub><doi>10.1007/s11425-021-1972-5</doi><tpages>36</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1674-7283 |
ispartof | Science China. Mathematics, 2023-05, Vol.66 (5), p.1087-1122 |
issn | 1674-7283 1869-1862 |
language | eng |
recordid | cdi_proquest_journals_2803474174 |
source | Springer Nature - Complete Springer Journals; Alma/SFX Local Collection |
subjects | Applications of Mathematics Convergence Data points Dimensional analysis Lower bounds Mathematics Mathematics and Statistics Minimax technique Principal components analysis Sampling error Subspaces |
title | Nearly optimal stochastic approximation for online principal subspace estimation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T18%3A05%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nearly%20optimal%20stochastic%20approximation%20for%20online%20principal%20subspace%20estimation&rft.jtitle=Science%20China.%20Mathematics&rft.au=Liang,%20Xin&rft.date=2023-05-01&rft.volume=66&rft.issue=5&rft.spage=1087&rft.epage=1122&rft.pages=1087-1122&rft.issn=1674-7283&rft.eissn=1869-1862&rft_id=info:doi/10.1007/s11425-021-1972-5&rft_dat=%3Cproquest_cross%3E2803474174%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2803474174&rft_id=info:pmid/&rfr_iscdi=true |