Spatial Modeling Approach for Dynamic Network Formation and Interactions

This study primarily seeks to answer the following question: How do social networks evolve over time and affect individual economic activity? To provide an adequate empirical tool to answer this question, we propose a new modeling approach for longitudinal data of networks and activity outcomes. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of business & economic statistics 2021, Vol.39 (1), p.120-135
Hauptverfasser: Han, Xiaoyi, Hsieh, Chih-Sheng, Ko, Stanley I. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 135
container_issue 1
container_start_page 120
container_title Journal of business & economic statistics
container_volume 39
creator Han, Xiaoyi
Hsieh, Chih-Sheng
Ko, Stanley I. M.
description This study primarily seeks to answer the following question: How do social networks evolve over time and affect individual economic activity? To provide an adequate empirical tool to answer this question, we propose a new modeling approach for longitudinal data of networks and activity outcomes. The key features of our model are the inclusion of dynamic effects and the use of time-varying latent variables to determine unobserved individual traits in network formation and activity interactions. The proposed model combines two well-known models in the field: latent space model for dynamic network formation and spatial dynamic panel data model for network interactions. This combination reflects real situations, where network links and activity outcomes are interdependent and jointly influenced by unobserved individual traits. Moreover, this combination enables us to (1) manage the endogenous selection issue inherited in network interaction studies, and (2) investigate the effect of homophily and individual heterogeneity in network formation. We develop a Bayesian Markov chain Monte Carlo sampling approach to estimate the model. We also provide a Monte Carlo experiment to analyze the performance of our estimation method and apply the model to a longitudinal student network data in Taiwan to study the friendship network formation and peer effect on academic performance. Supplementary materials for this article are available online.
doi_str_mv 10.1080/07350015.2019.1639395
format Article
fullrecord <record><control><sourceid>proquest_econi</sourceid><recordid>TN_cdi_proquest_journals_2803112162</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2803112162</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-ee248339e8500d8e769cdbad1a3ef873133869c554d9c31acc28a569873d087d3</originalsourceid><addsrcrecordid>eNp9kM1OAyEURonRxFp9BBMS11P5GQbY2VRrm1RdqGuCwOjUKYwwjenby6Q17mRDuJzv3psDwCVGE4wEukacMoQwmxCE5QRXVFLJjsAIM8oLwhE_BqOBKQboFJyltEb5CFaNwOK5032jW_gQrGsb_w6nXReDNh-wDhHe7rzeNAY-uv47xE84D3GT-eCh9hYufe-iNsM7nYOTWrfJXRzuMXid373MFsXq6X45m64KU3LWF86RUlAqncgrW-F4JY190xZr6mrBKaZU5BJjpZWGYm0MEZpVMn9ZJLilY3C175u3_Nq61Kt12EafRyoiEMWY4Ipkiu0pE0NK0dWqi81Gx53CSA3S1K80NUhTB2k5B_c5Z4Jv0l-Kl5xKQhjOyM0eaXw92MheWqt6vWtDrKP2Jsfo_1N-AH1-fKA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2803112162</pqid></control><display><type>article</type><title>Spatial Modeling Approach for Dynamic Network Formation and Interactions</title><source>Business Source Complete</source><creator>Han, Xiaoyi ; Hsieh, Chih-Sheng ; Ko, Stanley I. M.</creator><creatorcontrib>Han, Xiaoyi ; Hsieh, Chih-Sheng ; Ko, Stanley I. M.</creatorcontrib><description>This study primarily seeks to answer the following question: How do social networks evolve over time and affect individual economic activity? To provide an adequate empirical tool to answer this question, we propose a new modeling approach for longitudinal data of networks and activity outcomes. The key features of our model are the inclusion of dynamic effects and the use of time-varying latent variables to determine unobserved individual traits in network formation and activity interactions. The proposed model combines two well-known models in the field: latent space model for dynamic network formation and spatial dynamic panel data model for network interactions. This combination reflects real situations, where network links and activity outcomes are interdependent and jointly influenced by unobserved individual traits. Moreover, this combination enables us to (1) manage the endogenous selection issue inherited in network interaction studies, and (2) investigate the effect of homophily and individual heterogeneity in network formation. We develop a Bayesian Markov chain Monte Carlo sampling approach to estimate the model. We also provide a Monte Carlo experiment to analyze the performance of our estimation method and apply the model to a longitudinal student network data in Taiwan to study the friendship network formation and peer effect on academic performance. Supplementary materials for this article are available online.</description><identifier>ISSN: 0735-0015</identifier><identifier>EISSN: 1537-2707</identifier><identifier>DOI: 10.1080/07350015.2019.1639395</identifier><language>eng</language><publisher>Alexandria: Taylor &amp; Francis</publisher><subject>Bayesian ; Dynamic network formation ; Latent variable ; Longitudinal studies ; Peer effects ; Spatial dynamic panel data model</subject><ispartof>Journal of business &amp; economic statistics, 2021, Vol.39 (1), p.120-135</ispartof><rights>2019 American Statistical Association 2019</rights><rights>2019 American Statistical Association</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-ee248339e8500d8e769cdbad1a3ef873133869c554d9c31acc28a569873d087d3</citedby><cites>FETCH-LOGICAL-c475t-ee248339e8500d8e769cdbad1a3ef873133869c554d9c31acc28a569873d087d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Han, Xiaoyi</creatorcontrib><creatorcontrib>Hsieh, Chih-Sheng</creatorcontrib><creatorcontrib>Ko, Stanley I. M.</creatorcontrib><title>Spatial Modeling Approach for Dynamic Network Formation and Interactions</title><title>Journal of business &amp; economic statistics</title><description>This study primarily seeks to answer the following question: How do social networks evolve over time and affect individual economic activity? To provide an adequate empirical tool to answer this question, we propose a new modeling approach for longitudinal data of networks and activity outcomes. The key features of our model are the inclusion of dynamic effects and the use of time-varying latent variables to determine unobserved individual traits in network formation and activity interactions. The proposed model combines two well-known models in the field: latent space model for dynamic network formation and spatial dynamic panel data model for network interactions. This combination reflects real situations, where network links and activity outcomes are interdependent and jointly influenced by unobserved individual traits. Moreover, this combination enables us to (1) manage the endogenous selection issue inherited in network interaction studies, and (2) investigate the effect of homophily and individual heterogeneity in network formation. We develop a Bayesian Markov chain Monte Carlo sampling approach to estimate the model. We also provide a Monte Carlo experiment to analyze the performance of our estimation method and apply the model to a longitudinal student network data in Taiwan to study the friendship network formation and peer effect on academic performance. Supplementary materials for this article are available online.</description><subject>Bayesian</subject><subject>Dynamic network formation</subject><subject>Latent variable</subject><subject>Longitudinal studies</subject><subject>Peer effects</subject><subject>Spatial dynamic panel data model</subject><issn>0735-0015</issn><issn>1537-2707</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OAyEURonRxFp9BBMS11P5GQbY2VRrm1RdqGuCwOjUKYwwjenby6Q17mRDuJzv3psDwCVGE4wEukacMoQwmxCE5QRXVFLJjsAIM8oLwhE_BqOBKQboFJyltEb5CFaNwOK5032jW_gQrGsb_w6nXReDNh-wDhHe7rzeNAY-uv47xE84D3GT-eCh9hYufe-iNsM7nYOTWrfJXRzuMXid373MFsXq6X45m64KU3LWF86RUlAqncgrW-F4JY190xZr6mrBKaZU5BJjpZWGYm0MEZpVMn9ZJLilY3C175u3_Nq61Kt12EafRyoiEMWY4Ipkiu0pE0NK0dWqi81Gx53CSA3S1K80NUhTB2k5B_c5Z4Jv0l-Kl5xKQhjOyM0eaXw92MheWqt6vWtDrKP2Jsfo_1N-AH1-fKA</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Han, Xiaoyi</creator><creator>Hsieh, Chih-Sheng</creator><creator>Ko, Stanley I. M.</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2021</creationdate><title>Spatial Modeling Approach for Dynamic Network Formation and Interactions</title><author>Han, Xiaoyi ; Hsieh, Chih-Sheng ; Ko, Stanley I. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-ee248339e8500d8e769cdbad1a3ef873133869c554d9c31acc28a569873d087d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bayesian</topic><topic>Dynamic network formation</topic><topic>Latent variable</topic><topic>Longitudinal studies</topic><topic>Peer effects</topic><topic>Spatial dynamic panel data model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Xiaoyi</creatorcontrib><creatorcontrib>Hsieh, Chih-Sheng</creatorcontrib><creatorcontrib>Ko, Stanley I. M.</creatorcontrib><collection>ECONIS</collection><collection>CrossRef</collection><jtitle>Journal of business &amp; economic statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Xiaoyi</au><au>Hsieh, Chih-Sheng</au><au>Ko, Stanley I. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatial Modeling Approach for Dynamic Network Formation and Interactions</atitle><jtitle>Journal of business &amp; economic statistics</jtitle><date>2021</date><risdate>2021</risdate><volume>39</volume><issue>1</issue><spage>120</spage><epage>135</epage><pages>120-135</pages><issn>0735-0015</issn><eissn>1537-2707</eissn><abstract>This study primarily seeks to answer the following question: How do social networks evolve over time and affect individual economic activity? To provide an adequate empirical tool to answer this question, we propose a new modeling approach for longitudinal data of networks and activity outcomes. The key features of our model are the inclusion of dynamic effects and the use of time-varying latent variables to determine unobserved individual traits in network formation and activity interactions. The proposed model combines two well-known models in the field: latent space model for dynamic network formation and spatial dynamic panel data model for network interactions. This combination reflects real situations, where network links and activity outcomes are interdependent and jointly influenced by unobserved individual traits. Moreover, this combination enables us to (1) manage the endogenous selection issue inherited in network interaction studies, and (2) investigate the effect of homophily and individual heterogeneity in network formation. We develop a Bayesian Markov chain Monte Carlo sampling approach to estimate the model. We also provide a Monte Carlo experiment to analyze the performance of our estimation method and apply the model to a longitudinal student network data in Taiwan to study the friendship network formation and peer effect on academic performance. Supplementary materials for this article are available online.</abstract><cop>Alexandria</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/07350015.2019.1639395</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0735-0015
ispartof Journal of business & economic statistics, 2021, Vol.39 (1), p.120-135
issn 0735-0015
1537-2707
language eng
recordid cdi_proquest_journals_2803112162
source Business Source Complete
subjects Bayesian
Dynamic network formation
Latent variable
Longitudinal studies
Peer effects
Spatial dynamic panel data model
title Spatial Modeling Approach for Dynamic Network Formation and Interactions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T06%3A04%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_econi&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatial%20Modeling%20Approach%20for%20Dynamic%20Network%20Formation%20and%20Interactions&rft.jtitle=Journal%20of%20business%20&%20economic%20statistics&rft.au=Han,%20Xiaoyi&rft.date=2021&rft.volume=39&rft.issue=1&rft.spage=120&rft.epage=135&rft.pages=120-135&rft.issn=0735-0015&rft.eissn=1537-2707&rft_id=info:doi/10.1080/07350015.2019.1639395&rft_dat=%3Cproquest_econi%3E2803112162%3C/proquest_econi%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2803112162&rft_id=info:pmid/&rfr_iscdi=true