Testing for the Martingale Difference Hypothesis in Multivariate Time Series Models
This article proposes a general class of tests to examine whether the error term is a martingale difference sequence in a multivariate time series model with parametric conditional mean. These new tests are formed based on recently developed martingale difference divergence matrix (MDDM), and they p...
Gespeichert in:
Veröffentlicht in: | Journal of business & economic statistics 2022-06, Vol.40 (3), p.980-994 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 994 |
---|---|
container_issue | 3 |
container_start_page | 980 |
container_title | Journal of business & economic statistics |
container_volume | 40 |
creator | Wang, Guochang Zhu, Ke Shao, Xiaofeng |
description | This article proposes a general class of tests to examine whether the error term is a martingale difference sequence in a multivariate time series model with parametric conditional mean. These new tests are formed based on recently developed martingale difference divergence matrix (MDDM), and they provide formal tools to test the multivariate martingale difference hypothesis in the literature for the first time. Under suitable conditions, the asymptotic null distributions of these MDDM-based tests are established. Moreover, these MDDM-based tests are consistent to detect a broad class of fixed alternatives, and have nontrivial power against local alternatives of order
, where n is the sample size. Since the asymptotic null distributions depend on the data generating process and the parameter estimation, a wild bootstrap procedure is further proposed to approximate the critical values of these MDDM-based tests, and its theoretical validity is justified. Finally, the usefulness of these MDDM-based tests is illustrated by simulation studies and one real data example. |
doi_str_mv | 10.1080/07350015.2021.1889568 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2803112081</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2803112081</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-f8d2f19397ae691a0d291d18a7115a30c9ea192ecc348c9eba0a287d25c2fd1c3</originalsourceid><addsrcrecordid>eNp9kE1PAyEQhonRxFr9CSYknrcybCnsTVM_amLjofVMkB2UZrtU2Gr672XTGm9yIROed2Z4CLkENgKm2DWTpWAMxIgzDiNQqhITdUQGIEpZcMnkMRn0TNFDp-QspRXLR4nJgCyWmDrfvlMXIu0-kM5N7GvTIL3zzmHE1iKd7TYhvyafqG_pfNt0_stEbzqkS79GusDoMdF5qLFJ5-TEmSbhxeEekteH--V0Vjy_PD5Nb58LO5aiK5yquYOqrKTBSQWG1byCGpSRAMKUzFZooOJobTlWuXgzzHAlay4sdzXYckiu9n03MXxu8z_0Kmxjm0dqrlgJwJmCTIk9ZWNIKaLTm-jXJu40MN3707_-dO9PH_zlHN3n0IbWp7-Uyuvk5pJn5GaP-DbrW5vvEJtad2bXhOiiaW2Olf9P-QGETIFB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2803112081</pqid></control><display><type>article</type><title>Testing for the Martingale Difference Hypothesis in Multivariate Time Series Models</title><source>Business Source Complete</source><creator>Wang, Guochang ; Zhu, Ke ; Shao, Xiaofeng</creator><creatorcontrib>Wang, Guochang ; Zhu, Ke ; Shao, Xiaofeng</creatorcontrib><description>This article proposes a general class of tests to examine whether the error term is a martingale difference sequence in a multivariate time series model with parametric conditional mean. These new tests are formed based on recently developed martingale difference divergence matrix (MDDM), and they provide formal tools to test the multivariate martingale difference hypothesis in the literature for the first time. Under suitable conditions, the asymptotic null distributions of these MDDM-based tests are established. Moreover, these MDDM-based tests are consistent to detect a broad class of fixed alternatives, and have nontrivial power against local alternatives of order
, where n is the sample size. Since the asymptotic null distributions depend on the data generating process and the parameter estimation, a wild bootstrap procedure is further proposed to approximate the critical values of these MDDM-based tests, and its theoretical validity is justified. Finally, the usefulness of these MDDM-based tests is illustrated by simulation studies and one real data example.</description><identifier>ISSN: 0735-0015</identifier><identifier>EISSN: 1537-2707</identifier><identifier>DOI: 10.1080/07350015.2021.1889568</identifier><language>eng</language><publisher>Alexandria: Taylor & Francis</publisher><subject>Hypotheses ; Martingale difference divergence matrix ; Martingale difference hypothesis ; Multivariate time series models ; Parameter estimation ; Specification test ; Time series ; Wild bootstrap</subject><ispartof>Journal of business & economic statistics, 2022-06, Vol.40 (3), p.980-994</ispartof><rights>2021 American Statistical Association 2021</rights><rights>2021 American Statistical Association</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-f8d2f19397ae691a0d291d18a7115a30c9ea192ecc348c9eba0a287d25c2fd1c3</citedby><cites>FETCH-LOGICAL-c475t-f8d2f19397ae691a0d291d18a7115a30c9ea192ecc348c9eba0a287d25c2fd1c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Wang, Guochang</creatorcontrib><creatorcontrib>Zhu, Ke</creatorcontrib><creatorcontrib>Shao, Xiaofeng</creatorcontrib><title>Testing for the Martingale Difference Hypothesis in Multivariate Time Series Models</title><title>Journal of business & economic statistics</title><description>This article proposes a general class of tests to examine whether the error term is a martingale difference sequence in a multivariate time series model with parametric conditional mean. These new tests are formed based on recently developed martingale difference divergence matrix (MDDM), and they provide formal tools to test the multivariate martingale difference hypothesis in the literature for the first time. Under suitable conditions, the asymptotic null distributions of these MDDM-based tests are established. Moreover, these MDDM-based tests are consistent to detect a broad class of fixed alternatives, and have nontrivial power against local alternatives of order
, where n is the sample size. Since the asymptotic null distributions depend on the data generating process and the parameter estimation, a wild bootstrap procedure is further proposed to approximate the critical values of these MDDM-based tests, and its theoretical validity is justified. Finally, the usefulness of these MDDM-based tests is illustrated by simulation studies and one real data example.</description><subject>Hypotheses</subject><subject>Martingale difference divergence matrix</subject><subject>Martingale difference hypothesis</subject><subject>Multivariate time series models</subject><subject>Parameter estimation</subject><subject>Specification test</subject><subject>Time series</subject><subject>Wild bootstrap</subject><issn>0735-0015</issn><issn>1537-2707</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PAyEQhonRxFr9CSYknrcybCnsTVM_amLjofVMkB2UZrtU2Gr672XTGm9yIROed2Z4CLkENgKm2DWTpWAMxIgzDiNQqhITdUQGIEpZcMnkMRn0TNFDp-QspRXLR4nJgCyWmDrfvlMXIu0-kM5N7GvTIL3zzmHE1iKd7TYhvyafqG_pfNt0_stEbzqkS79GusDoMdF5qLFJ5-TEmSbhxeEekteH--V0Vjy_PD5Nb58LO5aiK5yquYOqrKTBSQWG1byCGpSRAMKUzFZooOJobTlWuXgzzHAlay4sdzXYckiu9n03MXxu8z_0Kmxjm0dqrlgJwJmCTIk9ZWNIKaLTm-jXJu40MN3707_-dO9PH_zlHN3n0IbWp7-Uyuvk5pJn5GaP-DbrW5vvEJtad2bXhOiiaW2Olf9P-QGETIFB</recordid><startdate>20220616</startdate><enddate>20220616</enddate><creator>Wang, Guochang</creator><creator>Zhu, Ke</creator><creator>Shao, Xiaofeng</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220616</creationdate><title>Testing for the Martingale Difference Hypothesis in Multivariate Time Series Models</title><author>Wang, Guochang ; Zhu, Ke ; Shao, Xiaofeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-f8d2f19397ae691a0d291d18a7115a30c9ea192ecc348c9eba0a287d25c2fd1c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Hypotheses</topic><topic>Martingale difference divergence matrix</topic><topic>Martingale difference hypothesis</topic><topic>Multivariate time series models</topic><topic>Parameter estimation</topic><topic>Specification test</topic><topic>Time series</topic><topic>Wild bootstrap</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Guochang</creatorcontrib><creatorcontrib>Zhu, Ke</creatorcontrib><creatorcontrib>Shao, Xiaofeng</creatorcontrib><collection>ECONIS</collection><collection>CrossRef</collection><jtitle>Journal of business & economic statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Guochang</au><au>Zhu, Ke</au><au>Shao, Xiaofeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Testing for the Martingale Difference Hypothesis in Multivariate Time Series Models</atitle><jtitle>Journal of business & economic statistics</jtitle><date>2022-06-16</date><risdate>2022</risdate><volume>40</volume><issue>3</issue><spage>980</spage><epage>994</epage><pages>980-994</pages><issn>0735-0015</issn><eissn>1537-2707</eissn><abstract>This article proposes a general class of tests to examine whether the error term is a martingale difference sequence in a multivariate time series model with parametric conditional mean. These new tests are formed based on recently developed martingale difference divergence matrix (MDDM), and they provide formal tools to test the multivariate martingale difference hypothesis in the literature for the first time. Under suitable conditions, the asymptotic null distributions of these MDDM-based tests are established. Moreover, these MDDM-based tests are consistent to detect a broad class of fixed alternatives, and have nontrivial power against local alternatives of order
, where n is the sample size. Since the asymptotic null distributions depend on the data generating process and the parameter estimation, a wild bootstrap procedure is further proposed to approximate the critical values of these MDDM-based tests, and its theoretical validity is justified. Finally, the usefulness of these MDDM-based tests is illustrated by simulation studies and one real data example.</abstract><cop>Alexandria</cop><pub>Taylor & Francis</pub><doi>10.1080/07350015.2021.1889568</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0735-0015 |
ispartof | Journal of business & economic statistics, 2022-06, Vol.40 (3), p.980-994 |
issn | 0735-0015 1537-2707 |
language | eng |
recordid | cdi_proquest_journals_2803112081 |
source | Business Source Complete |
subjects | Hypotheses Martingale difference divergence matrix Martingale difference hypothesis Multivariate time series models Parameter estimation Specification test Time series Wild bootstrap |
title | Testing for the Martingale Difference Hypothesis in Multivariate Time Series Models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T04%3A19%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Testing%20for%20the%20Martingale%20Difference%20Hypothesis%20in%20Multivariate%20Time%20Series%20Models&rft.jtitle=Journal%20of%20business%20&%20economic%20statistics&rft.au=Wang,%20Guochang&rft.date=2022-06-16&rft.volume=40&rft.issue=3&rft.spage=980&rft.epage=994&rft.pages=980-994&rft.issn=0735-0015&rft.eissn=1537-2707&rft_id=info:doi/10.1080/07350015.2021.1889568&rft_dat=%3Cproquest_cross%3E2803112081%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2803112081&rft_id=info:pmid/&rfr_iscdi=true |