Testing for the Martingale Difference Hypothesis in Multivariate Time Series Models

This article proposes a general class of tests to examine whether the error term is a martingale difference sequence in a multivariate time series model with parametric conditional mean. These new tests are formed based on recently developed martingale difference divergence matrix (MDDM), and they p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of business & economic statistics 2022-06, Vol.40 (3), p.980-994
Hauptverfasser: Wang, Guochang, Zhu, Ke, Shao, Xiaofeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 994
container_issue 3
container_start_page 980
container_title Journal of business & economic statistics
container_volume 40
creator Wang, Guochang
Zhu, Ke
Shao, Xiaofeng
description This article proposes a general class of tests to examine whether the error term is a martingale difference sequence in a multivariate time series model with parametric conditional mean. These new tests are formed based on recently developed martingale difference divergence matrix (MDDM), and they provide formal tools to test the multivariate martingale difference hypothesis in the literature for the first time. Under suitable conditions, the asymptotic null distributions of these MDDM-based tests are established. Moreover, these MDDM-based tests are consistent to detect a broad class of fixed alternatives, and have nontrivial power against local alternatives of order , where n is the sample size. Since the asymptotic null distributions depend on the data generating process and the parameter estimation, a wild bootstrap procedure is further proposed to approximate the critical values of these MDDM-based tests, and its theoretical validity is justified. Finally, the usefulness of these MDDM-based tests is illustrated by simulation studies and one real data example.
doi_str_mv 10.1080/07350015.2021.1889568
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2803112081</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2803112081</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-f8d2f19397ae691a0d291d18a7115a30c9ea192ecc348c9eba0a287d25c2fd1c3</originalsourceid><addsrcrecordid>eNp9kE1PAyEQhonRxFr9CSYknrcybCnsTVM_amLjofVMkB2UZrtU2Gr672XTGm9yIROed2Z4CLkENgKm2DWTpWAMxIgzDiNQqhITdUQGIEpZcMnkMRn0TNFDp-QspRXLR4nJgCyWmDrfvlMXIu0-kM5N7GvTIL3zzmHE1iKd7TYhvyafqG_pfNt0_stEbzqkS79GusDoMdF5qLFJ5-TEmSbhxeEekteH--V0Vjy_PD5Nb58LO5aiK5yquYOqrKTBSQWG1byCGpSRAMKUzFZooOJobTlWuXgzzHAlay4sdzXYckiu9n03MXxu8z_0Kmxjm0dqrlgJwJmCTIk9ZWNIKaLTm-jXJu40MN3707_-dO9PH_zlHN3n0IbWp7-Uyuvk5pJn5GaP-DbrW5vvEJtad2bXhOiiaW2Olf9P-QGETIFB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2803112081</pqid></control><display><type>article</type><title>Testing for the Martingale Difference Hypothesis in Multivariate Time Series Models</title><source>Business Source Complete</source><creator>Wang, Guochang ; Zhu, Ke ; Shao, Xiaofeng</creator><creatorcontrib>Wang, Guochang ; Zhu, Ke ; Shao, Xiaofeng</creatorcontrib><description>This article proposes a general class of tests to examine whether the error term is a martingale difference sequence in a multivariate time series model with parametric conditional mean. These new tests are formed based on recently developed martingale difference divergence matrix (MDDM), and they provide formal tools to test the multivariate martingale difference hypothesis in the literature for the first time. Under suitable conditions, the asymptotic null distributions of these MDDM-based tests are established. Moreover, these MDDM-based tests are consistent to detect a broad class of fixed alternatives, and have nontrivial power against local alternatives of order , where n is the sample size. Since the asymptotic null distributions depend on the data generating process and the parameter estimation, a wild bootstrap procedure is further proposed to approximate the critical values of these MDDM-based tests, and its theoretical validity is justified. Finally, the usefulness of these MDDM-based tests is illustrated by simulation studies and one real data example.</description><identifier>ISSN: 0735-0015</identifier><identifier>EISSN: 1537-2707</identifier><identifier>DOI: 10.1080/07350015.2021.1889568</identifier><language>eng</language><publisher>Alexandria: Taylor &amp; Francis</publisher><subject>Hypotheses ; Martingale difference divergence matrix ; Martingale difference hypothesis ; Multivariate time series models ; Parameter estimation ; Specification test ; Time series ; Wild bootstrap</subject><ispartof>Journal of business &amp; economic statistics, 2022-06, Vol.40 (3), p.980-994</ispartof><rights>2021 American Statistical Association 2021</rights><rights>2021 American Statistical Association</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-f8d2f19397ae691a0d291d18a7115a30c9ea192ecc348c9eba0a287d25c2fd1c3</citedby><cites>FETCH-LOGICAL-c475t-f8d2f19397ae691a0d291d18a7115a30c9ea192ecc348c9eba0a287d25c2fd1c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Wang, Guochang</creatorcontrib><creatorcontrib>Zhu, Ke</creatorcontrib><creatorcontrib>Shao, Xiaofeng</creatorcontrib><title>Testing for the Martingale Difference Hypothesis in Multivariate Time Series Models</title><title>Journal of business &amp; economic statistics</title><description>This article proposes a general class of tests to examine whether the error term is a martingale difference sequence in a multivariate time series model with parametric conditional mean. These new tests are formed based on recently developed martingale difference divergence matrix (MDDM), and they provide formal tools to test the multivariate martingale difference hypothesis in the literature for the first time. Under suitable conditions, the asymptotic null distributions of these MDDM-based tests are established. Moreover, these MDDM-based tests are consistent to detect a broad class of fixed alternatives, and have nontrivial power against local alternatives of order , where n is the sample size. Since the asymptotic null distributions depend on the data generating process and the parameter estimation, a wild bootstrap procedure is further proposed to approximate the critical values of these MDDM-based tests, and its theoretical validity is justified. Finally, the usefulness of these MDDM-based tests is illustrated by simulation studies and one real data example.</description><subject>Hypotheses</subject><subject>Martingale difference divergence matrix</subject><subject>Martingale difference hypothesis</subject><subject>Multivariate time series models</subject><subject>Parameter estimation</subject><subject>Specification test</subject><subject>Time series</subject><subject>Wild bootstrap</subject><issn>0735-0015</issn><issn>1537-2707</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PAyEQhonRxFr9CSYknrcybCnsTVM_amLjofVMkB2UZrtU2Gr672XTGm9yIROed2Z4CLkENgKm2DWTpWAMxIgzDiNQqhITdUQGIEpZcMnkMRn0TNFDp-QspRXLR4nJgCyWmDrfvlMXIu0-kM5N7GvTIL3zzmHE1iKd7TYhvyafqG_pfNt0_stEbzqkS79GusDoMdF5qLFJ5-TEmSbhxeEekteH--V0Vjy_PD5Nb58LO5aiK5yquYOqrKTBSQWG1byCGpSRAMKUzFZooOJobTlWuXgzzHAlay4sdzXYckiu9n03MXxu8z_0Kmxjm0dqrlgJwJmCTIk9ZWNIKaLTm-jXJu40MN3707_-dO9PH_zlHN3n0IbWp7-Uyuvk5pJn5GaP-DbrW5vvEJtad2bXhOiiaW2Olf9P-QGETIFB</recordid><startdate>20220616</startdate><enddate>20220616</enddate><creator>Wang, Guochang</creator><creator>Zhu, Ke</creator><creator>Shao, Xiaofeng</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220616</creationdate><title>Testing for the Martingale Difference Hypothesis in Multivariate Time Series Models</title><author>Wang, Guochang ; Zhu, Ke ; Shao, Xiaofeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-f8d2f19397ae691a0d291d18a7115a30c9ea192ecc348c9eba0a287d25c2fd1c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Hypotheses</topic><topic>Martingale difference divergence matrix</topic><topic>Martingale difference hypothesis</topic><topic>Multivariate time series models</topic><topic>Parameter estimation</topic><topic>Specification test</topic><topic>Time series</topic><topic>Wild bootstrap</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Guochang</creatorcontrib><creatorcontrib>Zhu, Ke</creatorcontrib><creatorcontrib>Shao, Xiaofeng</creatorcontrib><collection>ECONIS</collection><collection>CrossRef</collection><jtitle>Journal of business &amp; economic statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Guochang</au><au>Zhu, Ke</au><au>Shao, Xiaofeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Testing for the Martingale Difference Hypothesis in Multivariate Time Series Models</atitle><jtitle>Journal of business &amp; economic statistics</jtitle><date>2022-06-16</date><risdate>2022</risdate><volume>40</volume><issue>3</issue><spage>980</spage><epage>994</epage><pages>980-994</pages><issn>0735-0015</issn><eissn>1537-2707</eissn><abstract>This article proposes a general class of tests to examine whether the error term is a martingale difference sequence in a multivariate time series model with parametric conditional mean. These new tests are formed based on recently developed martingale difference divergence matrix (MDDM), and they provide formal tools to test the multivariate martingale difference hypothesis in the literature for the first time. Under suitable conditions, the asymptotic null distributions of these MDDM-based tests are established. Moreover, these MDDM-based tests are consistent to detect a broad class of fixed alternatives, and have nontrivial power against local alternatives of order , where n is the sample size. Since the asymptotic null distributions depend on the data generating process and the parameter estimation, a wild bootstrap procedure is further proposed to approximate the critical values of these MDDM-based tests, and its theoretical validity is justified. Finally, the usefulness of these MDDM-based tests is illustrated by simulation studies and one real data example.</abstract><cop>Alexandria</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/07350015.2021.1889568</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0735-0015
ispartof Journal of business & economic statistics, 2022-06, Vol.40 (3), p.980-994
issn 0735-0015
1537-2707
language eng
recordid cdi_proquest_journals_2803112081
source Business Source Complete
subjects Hypotheses
Martingale difference divergence matrix
Martingale difference hypothesis
Multivariate time series models
Parameter estimation
Specification test
Time series
Wild bootstrap
title Testing for the Martingale Difference Hypothesis in Multivariate Time Series Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T04%3A19%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Testing%20for%20the%20Martingale%20Difference%20Hypothesis%20in%20Multivariate%20Time%20Series%20Models&rft.jtitle=Journal%20of%20business%20&%20economic%20statistics&rft.au=Wang,%20Guochang&rft.date=2022-06-16&rft.volume=40&rft.issue=3&rft.spage=980&rft.epage=994&rft.pages=980-994&rft.issn=0735-0015&rft.eissn=1537-2707&rft_id=info:doi/10.1080/07350015.2021.1889568&rft_dat=%3Cproquest_cross%3E2803112081%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2803112081&rft_id=info:pmid/&rfr_iscdi=true