Adaptive Inference in Heteroscedastic Fractional Time Series Models

We consider estimation and inference in fractionally integrated time series models driven by shocks which can display conditional and unconditional heteroscedasticity of unknown form. Although the standard conditional sum-of-squares (CSS) estimator remains consistent and asymptotically normal in suc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of business & economic statistics 2022, Vol.40 (1), p.50-65
Hauptverfasser: Cavaliere, Giuseppe, Nielsen, Morten Ørregaard, Robert Taylor, A. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 65
container_issue 1
container_start_page 50
container_title Journal of business & economic statistics
container_volume 40
creator Cavaliere, Giuseppe
Nielsen, Morten Ørregaard
Robert Taylor, A. M.
description We consider estimation and inference in fractionally integrated time series models driven by shocks which can display conditional and unconditional heteroscedasticity of unknown form. Although the standard conditional sum-of-squares (CSS) estimator remains consistent and asymptotically normal in such cases, unconditional heteroscedasticity inflates its variance matrix by a scalar quantity, , thereby inducing a loss in efficiency relative to the unconditionally homoscedastic case, λ = 1. We propose an adaptive version of the CSS estimator, based on nonparametric kernel-based estimation of the unconditional volatility process. We show that adaptive estimation eliminates the factor λ from the variance matrix, thereby delivering the same asymptotic efficiency as that attained by the standard CSS estimator in the unconditionally homoscedastic case and, hence, asymptotic efficiency under Gaussianity. Importantly, the asymptotic analysis is based on a novel proof strategy, which does not require consistent estimation (in the sup norm) of the volatility process. Consequently, we are able to work under a weaker set of assumptions than those employed in the extant literature. The asymptotic variance matrices of both the standard and adaptive CSS (ACSS) estimators depend on any weak parametric autocorrelation present in the fractional model and any conditional heteroscedasticity in the shocks. Consequently, asymptotically pivotal inference can be achieved through the development of confidence regions or hypothesis tests using either heteroscedasticity-robust standard errors and/or a wild bootstrap. Monte Carlo simulations and empirical applications illustrate the practical usefulness of the methods proposed.
doi_str_mv 10.1080/07350015.2020.1773275
format Article
fullrecord <record><control><sourceid>proquest_econi</sourceid><recordid>TN_cdi_proquest_journals_2803105376</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2803105376</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-c1223ad26d0fab0971ef6b4746156948ba8bfe7a8173490b2e0c3a73c3f2638b3</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKsfQQh43po_m016sxRrCxUP1nPIZieQst3UZKv025ulFW_OZWD4vZl5D6F7SiaUKPJIJBeEUDFhhOWRlJxJcYFGVHBZMEnkJRoNTDFA1-gmpS3JpUQ1QvNZY_a9_wK86hxE6Cxg3-El9BBDstCY1HuLF9HY3ofOtHjjd4DfIXpI-DU00KZbdOVMm-Du3MfoY_G8mS-L9dvLaj5bF7aUoi8sZYybhlUNcaYmU0nBVXUpy4qKalqq2qjagTSKSl5OSc2AWG4kt9yxiquaj9HDae8-hs8DpF5vwyHmn5JminBKst8qU-JE2WwgRXB6H_3OxKOmRA956d-89JCXPueVdfikAxs6n_5UUkmpKOMsI08nxHcuxJ35DrFtdG-ObYgums5mGf__yg9PAXqG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2803105376</pqid></control><display><type>article</type><title>Adaptive Inference in Heteroscedastic Fractional Time Series Models</title><source>EBSCO Business Source Complete</source><creator>Cavaliere, Giuseppe ; Nielsen, Morten Ørregaard ; Robert Taylor, A. M.</creator><creatorcontrib>Cavaliere, Giuseppe ; Nielsen, Morten Ørregaard ; Robert Taylor, A. M.</creatorcontrib><description>We consider estimation and inference in fractionally integrated time series models driven by shocks which can display conditional and unconditional heteroscedasticity of unknown form. Although the standard conditional sum-of-squares (CSS) estimator remains consistent and asymptotically normal in such cases, unconditional heteroscedasticity inflates its variance matrix by a scalar quantity, , thereby inducing a loss in efficiency relative to the unconditionally homoscedastic case, λ = 1. We propose an adaptive version of the CSS estimator, based on nonparametric kernel-based estimation of the unconditional volatility process. We show that adaptive estimation eliminates the factor λ from the variance matrix, thereby delivering the same asymptotic efficiency as that attained by the standard CSS estimator in the unconditionally homoscedastic case and, hence, asymptotic efficiency under Gaussianity. Importantly, the asymptotic analysis is based on a novel proof strategy, which does not require consistent estimation (in the sup norm) of the volatility process. Consequently, we are able to work under a weaker set of assumptions than those employed in the extant literature. The asymptotic variance matrices of both the standard and adaptive CSS (ACSS) estimators depend on any weak parametric autocorrelation present in the fractional model and any conditional heteroscedasticity in the shocks. Consequently, asymptotically pivotal inference can be achieved through the development of confidence regions or hypothesis tests using either heteroscedasticity-robust standard errors and/or a wild bootstrap. Monte Carlo simulations and empirical applications illustrate the practical usefulness of the methods proposed.</description><identifier>ISSN: 0735-0015</identifier><identifier>EISSN: 1537-2707</identifier><identifier>DOI: 10.1080/07350015.2020.1773275</identifier><language>eng</language><publisher>Alexandria: Taylor &amp; Francis</publisher><subject>Adaptive estimation ; Conditional sum-of-squares ; Efficiency ; Fractional integration ; Heteroscedasticity ; Quasi-maximum likelihood estimation ; Time series ; Wild bootstrap</subject><ispartof>Journal of business &amp; economic statistics, 2022, Vol.40 (1), p.50-65</ispartof><rights>2020 American Statistical Association 2020</rights><rights>2020 American Statistical Association</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-c1223ad26d0fab0971ef6b4746156948ba8bfe7a8173490b2e0c3a73c3f2638b3</citedby><cites>FETCH-LOGICAL-c475t-c1223ad26d0fab0971ef6b4746156948ba8bfe7a8173490b2e0c3a73c3f2638b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Cavaliere, Giuseppe</creatorcontrib><creatorcontrib>Nielsen, Morten Ørregaard</creatorcontrib><creatorcontrib>Robert Taylor, A. M.</creatorcontrib><title>Adaptive Inference in Heteroscedastic Fractional Time Series Models</title><title>Journal of business &amp; economic statistics</title><description>We consider estimation and inference in fractionally integrated time series models driven by shocks which can display conditional and unconditional heteroscedasticity of unknown form. Although the standard conditional sum-of-squares (CSS) estimator remains consistent and asymptotically normal in such cases, unconditional heteroscedasticity inflates its variance matrix by a scalar quantity, , thereby inducing a loss in efficiency relative to the unconditionally homoscedastic case, λ = 1. We propose an adaptive version of the CSS estimator, based on nonparametric kernel-based estimation of the unconditional volatility process. We show that adaptive estimation eliminates the factor λ from the variance matrix, thereby delivering the same asymptotic efficiency as that attained by the standard CSS estimator in the unconditionally homoscedastic case and, hence, asymptotic efficiency under Gaussianity. Importantly, the asymptotic analysis is based on a novel proof strategy, which does not require consistent estimation (in the sup norm) of the volatility process. Consequently, we are able to work under a weaker set of assumptions than those employed in the extant literature. The asymptotic variance matrices of both the standard and adaptive CSS (ACSS) estimators depend on any weak parametric autocorrelation present in the fractional model and any conditional heteroscedasticity in the shocks. Consequently, asymptotically pivotal inference can be achieved through the development of confidence regions or hypothesis tests using either heteroscedasticity-robust standard errors and/or a wild bootstrap. Monte Carlo simulations and empirical applications illustrate the practical usefulness of the methods proposed.</description><subject>Adaptive estimation</subject><subject>Conditional sum-of-squares</subject><subject>Efficiency</subject><subject>Fractional integration</subject><subject>Heteroscedasticity</subject><subject>Quasi-maximum likelihood estimation</subject><subject>Time series</subject><subject>Wild bootstrap</subject><issn>0735-0015</issn><issn>1537-2707</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKsfQQh43po_m016sxRrCxUP1nPIZieQst3UZKv025ulFW_OZWD4vZl5D6F7SiaUKPJIJBeEUDFhhOWRlJxJcYFGVHBZMEnkJRoNTDFA1-gmpS3JpUQ1QvNZY_a9_wK86hxE6Cxg3-El9BBDstCY1HuLF9HY3ofOtHjjd4DfIXpI-DU00KZbdOVMm-Du3MfoY_G8mS-L9dvLaj5bF7aUoi8sZYybhlUNcaYmU0nBVXUpy4qKalqq2qjagTSKSl5OSc2AWG4kt9yxiquaj9HDae8-hs8DpF5vwyHmn5JminBKst8qU-JE2WwgRXB6H_3OxKOmRA956d-89JCXPueVdfikAxs6n_5UUkmpKOMsI08nxHcuxJ35DrFtdG-ObYgums5mGf__yg9PAXqG</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Cavaliere, Giuseppe</creator><creator>Nielsen, Morten Ørregaard</creator><creator>Robert Taylor, A. M.</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2022</creationdate><title>Adaptive Inference in Heteroscedastic Fractional Time Series Models</title><author>Cavaliere, Giuseppe ; Nielsen, Morten Ørregaard ; Robert Taylor, A. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-c1223ad26d0fab0971ef6b4746156948ba8bfe7a8173490b2e0c3a73c3f2638b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaptive estimation</topic><topic>Conditional sum-of-squares</topic><topic>Efficiency</topic><topic>Fractional integration</topic><topic>Heteroscedasticity</topic><topic>Quasi-maximum likelihood estimation</topic><topic>Time series</topic><topic>Wild bootstrap</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cavaliere, Giuseppe</creatorcontrib><creatorcontrib>Nielsen, Morten Ørregaard</creatorcontrib><creatorcontrib>Robert Taylor, A. M.</creatorcontrib><collection>ECONIS</collection><collection>CrossRef</collection><jtitle>Journal of business &amp; economic statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cavaliere, Giuseppe</au><au>Nielsen, Morten Ørregaard</au><au>Robert Taylor, A. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Inference in Heteroscedastic Fractional Time Series Models</atitle><jtitle>Journal of business &amp; economic statistics</jtitle><date>2022</date><risdate>2022</risdate><volume>40</volume><issue>1</issue><spage>50</spage><epage>65</epage><pages>50-65</pages><issn>0735-0015</issn><eissn>1537-2707</eissn><abstract>We consider estimation and inference in fractionally integrated time series models driven by shocks which can display conditional and unconditional heteroscedasticity of unknown form. Although the standard conditional sum-of-squares (CSS) estimator remains consistent and asymptotically normal in such cases, unconditional heteroscedasticity inflates its variance matrix by a scalar quantity, , thereby inducing a loss in efficiency relative to the unconditionally homoscedastic case, λ = 1. We propose an adaptive version of the CSS estimator, based on nonparametric kernel-based estimation of the unconditional volatility process. We show that adaptive estimation eliminates the factor λ from the variance matrix, thereby delivering the same asymptotic efficiency as that attained by the standard CSS estimator in the unconditionally homoscedastic case and, hence, asymptotic efficiency under Gaussianity. Importantly, the asymptotic analysis is based on a novel proof strategy, which does not require consistent estimation (in the sup norm) of the volatility process. Consequently, we are able to work under a weaker set of assumptions than those employed in the extant literature. The asymptotic variance matrices of both the standard and adaptive CSS (ACSS) estimators depend on any weak parametric autocorrelation present in the fractional model and any conditional heteroscedasticity in the shocks. Consequently, asymptotically pivotal inference can be achieved through the development of confidence regions or hypothesis tests using either heteroscedasticity-robust standard errors and/or a wild bootstrap. Monte Carlo simulations and empirical applications illustrate the practical usefulness of the methods proposed.</abstract><cop>Alexandria</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/07350015.2020.1773275</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0735-0015
ispartof Journal of business & economic statistics, 2022, Vol.40 (1), p.50-65
issn 0735-0015
1537-2707
language eng
recordid cdi_proquest_journals_2803105376
source EBSCO Business Source Complete
subjects Adaptive estimation
Conditional sum-of-squares
Efficiency
Fractional integration
Heteroscedasticity
Quasi-maximum likelihood estimation
Time series
Wild bootstrap
title Adaptive Inference in Heteroscedastic Fractional Time Series Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T16%3A57%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_econi&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Inference%20in%20Heteroscedastic%20Fractional%20Time%20Series%20Models&rft.jtitle=Journal%20of%20business%20&%20economic%20statistics&rft.au=Cavaliere,%20Giuseppe&rft.date=2022&rft.volume=40&rft.issue=1&rft.spage=50&rft.epage=65&rft.pages=50-65&rft.issn=0735-0015&rft.eissn=1537-2707&rft_id=info:doi/10.1080/07350015.2020.1773275&rft_dat=%3Cproquest_econi%3E2803105376%3C/proquest_econi%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2803105376&rft_id=info:pmid/&rfr_iscdi=true