System Estimation of Panel Data Models Under Long-Range Dependence

A general dynamic panel data model is considered that incorporates individual and interactive fixed effects allowing for contemporaneous correlation in model innovations. The model accommodates general stationary or nonstationary long-range dependence through interactive fixed effects and innovation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of business & economic statistics 2019-01, Vol.37 (1), p.13-26
1. Verfasser: Ergemen, Yunus Emre
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 26
container_issue 1
container_start_page 13
container_title Journal of business & economic statistics
container_volume 37
creator Ergemen, Yunus Emre
description A general dynamic panel data model is considered that incorporates individual and interactive fixed effects allowing for contemporaneous correlation in model innovations. The model accommodates general stationary or nonstationary long-range dependence through interactive fixed effects and innovations, removing the necessity to perform a priori unit-root or stationarity testing. Moreover, persistence in innovations and interactive fixed effects allows for cointegration; innovations can also have vector-autoregressive dynamics; deterministic trends can be featured. Estimations are performed using conditional-sum-of-squares criteria based on projected series by which latent characteristics are proxied. Resulting estimates are consistent and asymptotically normal at standard parametric rates. A simulation study provides reliability on the estimation method. The method is then applied to the long-run relationship between debt and GDP. Supplementary materials for this article are available online.
doi_str_mv 10.1080/07350015.2016.1255217
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2803105031</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>45181152</jstor_id><sourcerecordid>45181152</sourcerecordid><originalsourceid>FETCH-LOGICAL-c472t-578ab56099f7231f711972d84438bfc11fc88ac80fc236756caf8fe84e972a5d3</originalsourceid><addsrcrecordid>eNp9kFtLAzEQhYMoWKs_QQiIj1szyWaTvnlpvUBFUfsc0mwiLdukJluk_94sq-iT8zAD4TtnMgehUyAjIJJcEME4IcBHlEA1Aso5BbGHBsCZKKggYh8NOqbooEN0lNKK5JK8GqDr111q7RpPU7tc63YZPA4OP2tvGzzRrcaPobZNwnNf24hnwb8XL9q_WzyxG5vfvLHH6MDpJtmT7zlE89vp2819MXu6e7i5mhWmFLQtuJB6wSsyHjtBGTgBMBa0lmXJ5MIZAGek1EYSZyirBK-MdtJZWdqMaV6zITrrfTcxfGxtatUqbKPPKxWVhAHhuWWK95SJIaVondrEfFncKSCqi0v9xKW6uNR3XFmHe501wS_Tr6oa00owSTrkvEdWqQ3xry9lRKiSgwTgNHOXPbf0LsS1_gyxqVWrd02ILmpvsj37_zdfakKEyQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2803105031</pqid></control><display><type>article</type><title>System Estimation of Panel Data Models Under Long-Range Dependence</title><source>Business Source Complete</source><creator>Ergemen, Yunus Emre</creator><creatorcontrib>Ergemen, Yunus Emre</creatorcontrib><description>A general dynamic panel data model is considered that incorporates individual and interactive fixed effects allowing for contemporaneous correlation in model innovations. The model accommodates general stationary or nonstationary long-range dependence through interactive fixed effects and innovations, removing the necessity to perform a priori unit-root or stationarity testing. Moreover, persistence in innovations and interactive fixed effects allows for cointegration; innovations can also have vector-autoregressive dynamics; deterministic trends can be featured. Estimations are performed using conditional-sum-of-squares criteria based on projected series by which latent characteristics are proxied. Resulting estimates are consistent and asymptotically normal at standard parametric rates. A simulation study provides reliability on the estimation method. The method is then applied to the long-run relationship between debt and GDP. Supplementary materials for this article are available online.</description><identifier>ISSN: 0735-0015</identifier><identifier>EISSN: 1537-2707</identifier><identifier>DOI: 10.1080/07350015.2016.1255217</identifier><language>eng</language><publisher>Alexandria: Taylor &amp; Francis</publisher><subject>Debt and GDP ; Endogeneity ; Factor models ; Fixed effects ; Long memory ; Longitudinal studies ; Panel data</subject><ispartof>Journal of business &amp; economic statistics, 2019-01, Vol.37 (1), p.13-26</ispartof><rights>2019 American Statistical Association 2019</rights><rights>Copyright © 2019 American Statistical Association</rights><rights>2019 American Statistical Association</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c472t-578ab56099f7231f711972d84438bfc11fc88ac80fc236756caf8fe84e972a5d3</citedby><cites>FETCH-LOGICAL-c472t-578ab56099f7231f711972d84438bfc11fc88ac80fc236756caf8fe84e972a5d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Ergemen, Yunus Emre</creatorcontrib><title>System Estimation of Panel Data Models Under Long-Range Dependence</title><title>Journal of business &amp; economic statistics</title><description>A general dynamic panel data model is considered that incorporates individual and interactive fixed effects allowing for contemporaneous correlation in model innovations. The model accommodates general stationary or nonstationary long-range dependence through interactive fixed effects and innovations, removing the necessity to perform a priori unit-root or stationarity testing. Moreover, persistence in innovations and interactive fixed effects allows for cointegration; innovations can also have vector-autoregressive dynamics; deterministic trends can be featured. Estimations are performed using conditional-sum-of-squares criteria based on projected series by which latent characteristics are proxied. Resulting estimates are consistent and asymptotically normal at standard parametric rates. A simulation study provides reliability on the estimation method. The method is then applied to the long-run relationship between debt and GDP. Supplementary materials for this article are available online.</description><subject>Debt and GDP</subject><subject>Endogeneity</subject><subject>Factor models</subject><subject>Fixed effects</subject><subject>Long memory</subject><subject>Longitudinal studies</subject><subject>Panel data</subject><issn>0735-0015</issn><issn>1537-2707</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kFtLAzEQhYMoWKs_QQiIj1szyWaTvnlpvUBFUfsc0mwiLdukJluk_94sq-iT8zAD4TtnMgehUyAjIJJcEME4IcBHlEA1Aso5BbGHBsCZKKggYh8NOqbooEN0lNKK5JK8GqDr111q7RpPU7tc63YZPA4OP2tvGzzRrcaPobZNwnNf24hnwb8XL9q_WzyxG5vfvLHH6MDpJtmT7zlE89vp2819MXu6e7i5mhWmFLQtuJB6wSsyHjtBGTgBMBa0lmXJ5MIZAGek1EYSZyirBK-MdtJZWdqMaV6zITrrfTcxfGxtatUqbKPPKxWVhAHhuWWK95SJIaVondrEfFncKSCqi0v9xKW6uNR3XFmHe501wS_Tr6oa00owSTrkvEdWqQ3xry9lRKiSgwTgNHOXPbf0LsS1_gyxqVWrd02ILmpvsj37_zdfakKEyQ</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Ergemen, Yunus Emre</creator><general>Taylor &amp; Francis</general><general>American Statistical Association</general><general>Taylor &amp; Francis Ltd</general><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190101</creationdate><title>System Estimation of Panel Data Models Under Long-Range Dependence</title><author>Ergemen, Yunus Emre</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c472t-578ab56099f7231f711972d84438bfc11fc88ac80fc236756caf8fe84e972a5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Debt and GDP</topic><topic>Endogeneity</topic><topic>Factor models</topic><topic>Fixed effects</topic><topic>Long memory</topic><topic>Longitudinal studies</topic><topic>Panel data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ergemen, Yunus Emre</creatorcontrib><collection>ECONIS</collection><collection>CrossRef</collection><jtitle>Journal of business &amp; economic statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ergemen, Yunus Emre</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>System Estimation of Panel Data Models Under Long-Range Dependence</atitle><jtitle>Journal of business &amp; economic statistics</jtitle><date>2019-01-01</date><risdate>2019</risdate><volume>37</volume><issue>1</issue><spage>13</spage><epage>26</epage><pages>13-26</pages><issn>0735-0015</issn><eissn>1537-2707</eissn><abstract>A general dynamic panel data model is considered that incorporates individual and interactive fixed effects allowing for contemporaneous correlation in model innovations. The model accommodates general stationary or nonstationary long-range dependence through interactive fixed effects and innovations, removing the necessity to perform a priori unit-root or stationarity testing. Moreover, persistence in innovations and interactive fixed effects allows for cointegration; innovations can also have vector-autoregressive dynamics; deterministic trends can be featured. Estimations are performed using conditional-sum-of-squares criteria based on projected series by which latent characteristics are proxied. Resulting estimates are consistent and asymptotically normal at standard parametric rates. A simulation study provides reliability on the estimation method. The method is then applied to the long-run relationship between debt and GDP. Supplementary materials for this article are available online.</abstract><cop>Alexandria</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/07350015.2016.1255217</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0735-0015
ispartof Journal of business & economic statistics, 2019-01, Vol.37 (1), p.13-26
issn 0735-0015
1537-2707
language eng
recordid cdi_proquest_journals_2803105031
source Business Source Complete
subjects Debt and GDP
Endogeneity
Factor models
Fixed effects
Long memory
Longitudinal studies
Panel data
title System Estimation of Panel Data Models Under Long-Range Dependence
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T07%3A42%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=System%20Estimation%20of%20Panel%20Data%20Models%20Under%20Long-Range%20Dependence&rft.jtitle=Journal%20of%20business%20&%20economic%20statistics&rft.au=Ergemen,%20Yunus%20Emre&rft.date=2019-01-01&rft.volume=37&rft.issue=1&rft.spage=13&rft.epage=26&rft.pages=13-26&rft.issn=0735-0015&rft.eissn=1537-2707&rft_id=info:doi/10.1080/07350015.2016.1255217&rft_dat=%3Cjstor_proqu%3E45181152%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2803105031&rft_id=info:pmid/&rft_jstor_id=45181152&rfr_iscdi=true