Space Efficient Sequence Alignment for SRAM-Based Computing: X-Drop on the Graphcore IPU
Dedicated accelerator hardware has become essential for processing AI-based workloads, leading to the rise of novel accelerator architectures. Furthermore, fundamental differences in memory architecture and parallelism have made these accelerators targets for scientific computing. The sequence align...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-04 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Burchard, Luk Max Xiaohang Zhao Langguth, Johannes Buluç, Aydın Guidi, Giulia |
description | Dedicated accelerator hardware has become essential for processing AI-based workloads, leading to the rise of novel accelerator architectures. Furthermore, fundamental differences in memory architecture and parallelism have made these accelerators targets for scientific computing. The sequence alignment problem is fundamental in bioinformatics; we have implemented the \(X\)-Drop algorithm, a heuristic method for pairwise alignment that reduces search space, on the Graphcore Intelligence Processor Unit (IPU) accelerator. The \(X\)-Drop algorithm has an irregular computational pattern, which makes it difficult to accelerate due to load balancing. Here, we introduce a graph-based partitioning and queue-based batch system to improve load balancing. Our implementation achieves \(10\times\) speedup over a state-of-the-art GPU implementation and up to \(4.65\times\) compared to CPU. In addition, we introduce a memory-restricted \(X\)-Drop algorithm that reduces memory footprint by \(55\times\) and efficiently uses the IPU's limited low-latency SRAM. This optimization further improves the strong scaling performance by \(3.6\times\). |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2803091063</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2803091063</sourcerecordid><originalsourceid>FETCH-proquest_journals_28030910633</originalsourceid><addsrcrecordid>eNqNjd8KgjAcRkcQJOU7_KDrwdrSrDsz-3MRRBZ4J2JTJ7qtTd8_gx6gqwPnfPBNkEMZW-FgTekMudY2hBDqb6jnMQelic4LDnFZikJw2UPC3wOXowpbUcnuq0plILmHV7zPLX9BpDo99EJWO0jxwSgNSkJfcziZXNeFMhwut-cCTcu8tdz9cY6Wx_gRnbE2anywfdaowcgxZTQgjGxXxGfsv9UHtJJABQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2803091063</pqid></control><display><type>article</type><title>Space Efficient Sequence Alignment for SRAM-Based Computing: X-Drop on the Graphcore IPU</title><source>Free E- Journals</source><creator>Burchard, Luk ; Max Xiaohang Zhao ; Langguth, Johannes ; Buluç, Aydın ; Guidi, Giulia</creator><creatorcontrib>Burchard, Luk ; Max Xiaohang Zhao ; Langguth, Johannes ; Buluç, Aydın ; Guidi, Giulia</creatorcontrib><description>Dedicated accelerator hardware has become essential for processing AI-based workloads, leading to the rise of novel accelerator architectures. Furthermore, fundamental differences in memory architecture and parallelism have made these accelerators targets for scientific computing. The sequence alignment problem is fundamental in bioinformatics; we have implemented the \(X\)-Drop algorithm, a heuristic method for pairwise alignment that reduces search space, on the Graphcore Intelligence Processor Unit (IPU) accelerator. The \(X\)-Drop algorithm has an irregular computational pattern, which makes it difficult to accelerate due to load balancing. Here, we introduce a graph-based partitioning and queue-based batch system to improve load balancing. Our implementation achieves \(10\times\) speedup over a state-of-the-art GPU implementation and up to \(4.65\times\) compared to CPU. In addition, we introduce a memory-restricted \(X\)-Drop algorithm that reduces memory footprint by \(55\times\) and efficiently uses the IPU's limited low-latency SRAM. This optimization further improves the strong scaling performance by \(3.6\times\).</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Alignment ; Bioinformatics ; Computation ; Computer architecture ; Computer memory ; Heuristic methods ; Load balancing ; Microprocessors ; Optimization</subject><ispartof>arXiv.org, 2023-04</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Burchard, Luk</creatorcontrib><creatorcontrib>Max Xiaohang Zhao</creatorcontrib><creatorcontrib>Langguth, Johannes</creatorcontrib><creatorcontrib>Buluç, Aydın</creatorcontrib><creatorcontrib>Guidi, Giulia</creatorcontrib><title>Space Efficient Sequence Alignment for SRAM-Based Computing: X-Drop on the Graphcore IPU</title><title>arXiv.org</title><description>Dedicated accelerator hardware has become essential for processing AI-based workloads, leading to the rise of novel accelerator architectures. Furthermore, fundamental differences in memory architecture and parallelism have made these accelerators targets for scientific computing. The sequence alignment problem is fundamental in bioinformatics; we have implemented the \(X\)-Drop algorithm, a heuristic method for pairwise alignment that reduces search space, on the Graphcore Intelligence Processor Unit (IPU) accelerator. The \(X\)-Drop algorithm has an irregular computational pattern, which makes it difficult to accelerate due to load balancing. Here, we introduce a graph-based partitioning and queue-based batch system to improve load balancing. Our implementation achieves \(10\times\) speedup over a state-of-the-art GPU implementation and up to \(4.65\times\) compared to CPU. In addition, we introduce a memory-restricted \(X\)-Drop algorithm that reduces memory footprint by \(55\times\) and efficiently uses the IPU's limited low-latency SRAM. This optimization further improves the strong scaling performance by \(3.6\times\).</description><subject>Algorithms</subject><subject>Alignment</subject><subject>Bioinformatics</subject><subject>Computation</subject><subject>Computer architecture</subject><subject>Computer memory</subject><subject>Heuristic methods</subject><subject>Load balancing</subject><subject>Microprocessors</subject><subject>Optimization</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjd8KgjAcRkcQJOU7_KDrwdrSrDsz-3MRRBZ4J2JTJ7qtTd8_gx6gqwPnfPBNkEMZW-FgTekMudY2hBDqb6jnMQelic4LDnFZikJw2UPC3wOXowpbUcnuq0plILmHV7zPLX9BpDo99EJWO0jxwSgNSkJfcziZXNeFMhwut-cCTcu8tdz9cY6Wx_gRnbE2anywfdaowcgxZTQgjGxXxGfsv9UHtJJABQ</recordid><startdate>20230417</startdate><enddate>20230417</enddate><creator>Burchard, Luk</creator><creator>Max Xiaohang Zhao</creator><creator>Langguth, Johannes</creator><creator>Buluç, Aydın</creator><creator>Guidi, Giulia</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230417</creationdate><title>Space Efficient Sequence Alignment for SRAM-Based Computing: X-Drop on the Graphcore IPU</title><author>Burchard, Luk ; Max Xiaohang Zhao ; Langguth, Johannes ; Buluç, Aydın ; Guidi, Giulia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28030910633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Alignment</topic><topic>Bioinformatics</topic><topic>Computation</topic><topic>Computer architecture</topic><topic>Computer memory</topic><topic>Heuristic methods</topic><topic>Load balancing</topic><topic>Microprocessors</topic><topic>Optimization</topic><toplevel>online_resources</toplevel><creatorcontrib>Burchard, Luk</creatorcontrib><creatorcontrib>Max Xiaohang Zhao</creatorcontrib><creatorcontrib>Langguth, Johannes</creatorcontrib><creatorcontrib>Buluç, Aydın</creatorcontrib><creatorcontrib>Guidi, Giulia</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Burchard, Luk</au><au>Max Xiaohang Zhao</au><au>Langguth, Johannes</au><au>Buluç, Aydın</au><au>Guidi, Giulia</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Space Efficient Sequence Alignment for SRAM-Based Computing: X-Drop on the Graphcore IPU</atitle><jtitle>arXiv.org</jtitle><date>2023-04-17</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Dedicated accelerator hardware has become essential for processing AI-based workloads, leading to the rise of novel accelerator architectures. Furthermore, fundamental differences in memory architecture and parallelism have made these accelerators targets for scientific computing. The sequence alignment problem is fundamental in bioinformatics; we have implemented the \(X\)-Drop algorithm, a heuristic method for pairwise alignment that reduces search space, on the Graphcore Intelligence Processor Unit (IPU) accelerator. The \(X\)-Drop algorithm has an irregular computational pattern, which makes it difficult to accelerate due to load balancing. Here, we introduce a graph-based partitioning and queue-based batch system to improve load balancing. Our implementation achieves \(10\times\) speedup over a state-of-the-art GPU implementation and up to \(4.65\times\) compared to CPU. In addition, we introduce a memory-restricted \(X\)-Drop algorithm that reduces memory footprint by \(55\times\) and efficiently uses the IPU's limited low-latency SRAM. This optimization further improves the strong scaling performance by \(3.6\times\).</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-04 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2803091063 |
source | Free E- Journals |
subjects | Algorithms Alignment Bioinformatics Computation Computer architecture Computer memory Heuristic methods Load balancing Microprocessors Optimization |
title | Space Efficient Sequence Alignment for SRAM-Based Computing: X-Drop on the Graphcore IPU |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T03%3A37%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Space%20Efficient%20Sequence%20Alignment%20for%20SRAM-Based%20Computing:%20X-Drop%20on%20the%20Graphcore%20IPU&rft.jtitle=arXiv.org&rft.au=Burchard,%20Luk&rft.date=2023-04-17&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2803091063%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2803091063&rft_id=info:pmid/&rfr_iscdi=true |