Characterisation of Planar Brownian Multiplicative Chaos

We characterise the multiplicative chaos measure M associated to planar Brownian motion introduced in Bass et al. (Ann Probab 22(2):566–625, 1994), Aïdékon et al. (Ann. Probab. 48(4), 1785–1825, 2020) and Jego (Ann Probab 48(4):1597–1643, 2020) by showing that it is the only random Borel measure sat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in mathematical physics 2023-04, Vol.399 (2), p.971-1019
1. Verfasser: Jego, Antoine
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1019
container_issue 2
container_start_page 971
container_title Communications in mathematical physics
container_volume 399
creator Jego, Antoine
description We characterise the multiplicative chaos measure M associated to planar Brownian motion introduced in Bass et al. (Ann Probab 22(2):566–625, 1994), Aïdékon et al. (Ann. Probab. 48(4), 1785–1825, 2020) and Jego (Ann Probab 48(4):1597–1643, 2020) by showing that it is the only random Borel measure satisfying a list of natural properties. These properties only serve to fix the average value of the measure and to express a spatial Markov property. As a consequence of our characterisation, we establish the scaling limit of the set of thick points of planar simple random walk, stopped at the first exit time of a domain, by showing the weak convergence towards M of the point measure associated to the thick points. In particular, we obtain the convergence of the appropriately normalised number of thick points of random walk to a nondegenerate random variable. The normalising constant is different from that of the Gaussian free field, as conjectured in Jego (Electron J Probab 25:39, 2020). These results cover the entire subcritical regime. A key new idea for this characterisation is to introduce measures describing the intersection between different independent Brownian trajectories and how they interact to create thick points.
doi_str_mv 10.1007/s00220-022-04570-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2802937933</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2802937933</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-465aec15ff9d4e3f15d839b95dc34c2670c85f76091f3bc1af47a5e758d525253</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMoWFe_gKeC5-gkaZLmqMV_sKIHPYdsmmiX2tSkq7if3mgFbzLwhoH3mxkeQscETgmAPEsAlALOgqHiEvB2BxWkYnlUROyiAoAAZoKIfXSQ0hoAFBWiQHXzYqKxk4tdMlMXhjL48qE3g4nlRQwfQ2eG8m7TT93YdzY73l2ZkZAO0Z43fXJHv32Bnq4uH5sbvLy_vm3Ol9gywSZcCW6cJdx71VaOecLbmqmV4q1llaVCgq25lyK_6dnKEuMrabiTvG45zcUW6GTeO8bwtnFp0uuwiUM-qWkNVDGpGMsuOrtsDClF5_UYu1cTPzUB_Z2QnhPSWfRPQnqbITZDKZuHZxf_Vv9DfQE6KWig</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2802937933</pqid></control><display><type>article</type><title>Characterisation of Planar Brownian Multiplicative Chaos</title><source>SpringerLink Journals</source><creator>Jego, Antoine</creator><creatorcontrib>Jego, Antoine</creatorcontrib><description>We characterise the multiplicative chaos measure M associated to planar Brownian motion introduced in Bass et al. (Ann Probab 22(2):566–625, 1994), Aïdékon et al. (Ann. Probab. 48(4), 1785–1825, 2020) and Jego (Ann Probab 48(4):1597–1643, 2020) by showing that it is the only random Borel measure satisfying a list of natural properties. These properties only serve to fix the average value of the measure and to express a spatial Markov property. As a consequence of our characterisation, we establish the scaling limit of the set of thick points of planar simple random walk, stopped at the first exit time of a domain, by showing the weak convergence towards M of the point measure associated to the thick points. In particular, we obtain the convergence of the appropriately normalised number of thick points of random walk to a nondegenerate random variable. The normalising constant is different from that of the Gaussian free field, as conjectured in Jego (Electron J Probab 25:39, 2020). These results cover the entire subcritical regime. A key new idea for this characterisation is to introduce measures describing the intersection between different independent Brownian trajectories and how they interact to create thick points.</description><identifier>ISSN: 0010-3616</identifier><identifier>EISSN: 1432-0916</identifier><identifier>DOI: 10.1007/s00220-022-04570-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Brownian motion ; Classical and Quantum Gravitation ; Complex Systems ; Convergence ; Mathematical and Computational Physics ; Mathematical Physics ; Normalizing (statistics) ; Physics ; Physics and Astronomy ; Quantum Physics ; Random variables ; Random walk ; Relativity Theory ; Theoretical</subject><ispartof>Communications in mathematical physics, 2023-04, Vol.399 (2), p.971-1019</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-465aec15ff9d4e3f15d839b95dc34c2670c85f76091f3bc1af47a5e758d525253</citedby><cites>FETCH-LOGICAL-c363t-465aec15ff9d4e3f15d839b95dc34c2670c85f76091f3bc1af47a5e758d525253</cites><orcidid>0000-0001-9670-670X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00220-022-04570-z$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00220-022-04570-z$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Jego, Antoine</creatorcontrib><title>Characterisation of Planar Brownian Multiplicative Chaos</title><title>Communications in mathematical physics</title><addtitle>Commun. Math. Phys</addtitle><description>We characterise the multiplicative chaos measure M associated to planar Brownian motion introduced in Bass et al. (Ann Probab 22(2):566–625, 1994), Aïdékon et al. (Ann. Probab. 48(4), 1785–1825, 2020) and Jego (Ann Probab 48(4):1597–1643, 2020) by showing that it is the only random Borel measure satisfying a list of natural properties. These properties only serve to fix the average value of the measure and to express a spatial Markov property. As a consequence of our characterisation, we establish the scaling limit of the set of thick points of planar simple random walk, stopped at the first exit time of a domain, by showing the weak convergence towards M of the point measure associated to the thick points. In particular, we obtain the convergence of the appropriately normalised number of thick points of random walk to a nondegenerate random variable. The normalising constant is different from that of the Gaussian free field, as conjectured in Jego (Electron J Probab 25:39, 2020). These results cover the entire subcritical regime. A key new idea for this characterisation is to introduce measures describing the intersection between different independent Brownian trajectories and how they interact to create thick points.</description><subject>Brownian motion</subject><subject>Classical and Quantum Gravitation</subject><subject>Complex Systems</subject><subject>Convergence</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Physics</subject><subject>Normalizing (statistics)</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Random variables</subject><subject>Random walk</subject><subject>Relativity Theory</subject><subject>Theoretical</subject><issn>0010-3616</issn><issn>1432-0916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kE9LxDAQxYMoWFe_gKeC5-gkaZLmqMV_sKIHPYdsmmiX2tSkq7if3mgFbzLwhoH3mxkeQscETgmAPEsAlALOgqHiEvB2BxWkYnlUROyiAoAAZoKIfXSQ0hoAFBWiQHXzYqKxk4tdMlMXhjL48qE3g4nlRQwfQ2eG8m7TT93YdzY73l2ZkZAO0Z43fXJHv32Bnq4uH5sbvLy_vm3Ol9gywSZcCW6cJdx71VaOecLbmqmV4q1llaVCgq25lyK_6dnKEuMrabiTvG45zcUW6GTeO8bwtnFp0uuwiUM-qWkNVDGpGMsuOrtsDClF5_UYu1cTPzUB_Z2QnhPSWfRPQnqbITZDKZuHZxf_Vv9DfQE6KWig</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Jego, Antoine</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9670-670X</orcidid></search><sort><creationdate>20230401</creationdate><title>Characterisation of Planar Brownian Multiplicative Chaos</title><author>Jego, Antoine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-465aec15ff9d4e3f15d839b95dc34c2670c85f76091f3bc1af47a5e758d525253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Brownian motion</topic><topic>Classical and Quantum Gravitation</topic><topic>Complex Systems</topic><topic>Convergence</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Physics</topic><topic>Normalizing (statistics)</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Random variables</topic><topic>Random walk</topic><topic>Relativity Theory</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jego, Antoine</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Communications in mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jego, Antoine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterisation of Planar Brownian Multiplicative Chaos</atitle><jtitle>Communications in mathematical physics</jtitle><stitle>Commun. Math. Phys</stitle><date>2023-04-01</date><risdate>2023</risdate><volume>399</volume><issue>2</issue><spage>971</spage><epage>1019</epage><pages>971-1019</pages><issn>0010-3616</issn><eissn>1432-0916</eissn><abstract>We characterise the multiplicative chaos measure M associated to planar Brownian motion introduced in Bass et al. (Ann Probab 22(2):566–625, 1994), Aïdékon et al. (Ann. Probab. 48(4), 1785–1825, 2020) and Jego (Ann Probab 48(4):1597–1643, 2020) by showing that it is the only random Borel measure satisfying a list of natural properties. These properties only serve to fix the average value of the measure and to express a spatial Markov property. As a consequence of our characterisation, we establish the scaling limit of the set of thick points of planar simple random walk, stopped at the first exit time of a domain, by showing the weak convergence towards M of the point measure associated to the thick points. In particular, we obtain the convergence of the appropriately normalised number of thick points of random walk to a nondegenerate random variable. The normalising constant is different from that of the Gaussian free field, as conjectured in Jego (Electron J Probab 25:39, 2020). These results cover the entire subcritical regime. A key new idea for this characterisation is to introduce measures describing the intersection between different independent Brownian trajectories and how they interact to create thick points.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00220-022-04570-z</doi><tpages>49</tpages><orcidid>https://orcid.org/0000-0001-9670-670X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0010-3616
ispartof Communications in mathematical physics, 2023-04, Vol.399 (2), p.971-1019
issn 0010-3616
1432-0916
language eng
recordid cdi_proquest_journals_2802937933
source SpringerLink Journals
subjects Brownian motion
Classical and Quantum Gravitation
Complex Systems
Convergence
Mathematical and Computational Physics
Mathematical Physics
Normalizing (statistics)
Physics
Physics and Astronomy
Quantum Physics
Random variables
Random walk
Relativity Theory
Theoretical
title Characterisation of Planar Brownian Multiplicative Chaos
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T12%3A39%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterisation%20of%20Planar%20Brownian%20Multiplicative%20Chaos&rft.jtitle=Communications%20in%20mathematical%20physics&rft.au=Jego,%20Antoine&rft.date=2023-04-01&rft.volume=399&rft.issue=2&rft.spage=971&rft.epage=1019&rft.pages=971-1019&rft.issn=0010-3616&rft.eissn=1432-0916&rft_id=info:doi/10.1007/s00220-022-04570-z&rft_dat=%3Cproquest_cross%3E2802937933%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2802937933&rft_id=info:pmid/&rfr_iscdi=true