Characterisation of Planar Brownian Multiplicative Chaos
We characterise the multiplicative chaos measure M associated to planar Brownian motion introduced in Bass et al. (Ann Probab 22(2):566–625, 1994), Aïdékon et al. (Ann. Probab. 48(4), 1785–1825, 2020) and Jego (Ann Probab 48(4):1597–1643, 2020) by showing that it is the only random Borel measure sat...
Gespeichert in:
Veröffentlicht in: | Communications in mathematical physics 2023-04, Vol.399 (2), p.971-1019 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1019 |
---|---|
container_issue | 2 |
container_start_page | 971 |
container_title | Communications in mathematical physics |
container_volume | 399 |
creator | Jego, Antoine |
description | We characterise the multiplicative chaos measure
M
associated to planar Brownian motion introduced in Bass et al. (Ann Probab 22(2):566–625, 1994), Aïdékon et al. (Ann. Probab. 48(4), 1785–1825, 2020) and Jego (Ann Probab 48(4):1597–1643, 2020) by showing that it is the only random Borel measure satisfying a list of natural properties. These properties only serve to fix the average value of the measure and to express a spatial Markov property. As a consequence of our characterisation, we establish the scaling limit of the set of thick points of planar simple random walk, stopped at the first exit time of a domain, by showing the weak convergence towards
M
of the point measure associated to the thick points. In particular, we obtain the convergence of the appropriately normalised number of thick points of random walk to a nondegenerate random variable. The normalising constant is different from that of the Gaussian free field, as conjectured in Jego (Electron J Probab 25:39, 2020). These results cover the entire subcritical regime. A key new idea for this characterisation is to introduce measures describing the intersection between different independent Brownian trajectories and how they interact to create thick points. |
doi_str_mv | 10.1007/s00220-022-04570-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2802937933</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2802937933</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-465aec15ff9d4e3f15d839b95dc34c2670c85f76091f3bc1af47a5e758d525253</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMoWFe_gKeC5-gkaZLmqMV_sKIHPYdsmmiX2tSkq7if3mgFbzLwhoH3mxkeQscETgmAPEsAlALOgqHiEvB2BxWkYnlUROyiAoAAZoKIfXSQ0hoAFBWiQHXzYqKxk4tdMlMXhjL48qE3g4nlRQwfQ2eG8m7TT93YdzY73l2ZkZAO0Z43fXJHv32Bnq4uH5sbvLy_vm3Ol9gywSZcCW6cJdx71VaOecLbmqmV4q1llaVCgq25lyK_6dnKEuMrabiTvG45zcUW6GTeO8bwtnFp0uuwiUM-qWkNVDGpGMsuOrtsDClF5_UYu1cTPzUB_Z2QnhPSWfRPQnqbITZDKZuHZxf_Vv9DfQE6KWig</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2802937933</pqid></control><display><type>article</type><title>Characterisation of Planar Brownian Multiplicative Chaos</title><source>SpringerLink Journals</source><creator>Jego, Antoine</creator><creatorcontrib>Jego, Antoine</creatorcontrib><description>We characterise the multiplicative chaos measure
M
associated to planar Brownian motion introduced in Bass et al. (Ann Probab 22(2):566–625, 1994), Aïdékon et al. (Ann. Probab. 48(4), 1785–1825, 2020) and Jego (Ann Probab 48(4):1597–1643, 2020) by showing that it is the only random Borel measure satisfying a list of natural properties. These properties only serve to fix the average value of the measure and to express a spatial Markov property. As a consequence of our characterisation, we establish the scaling limit of the set of thick points of planar simple random walk, stopped at the first exit time of a domain, by showing the weak convergence towards
M
of the point measure associated to the thick points. In particular, we obtain the convergence of the appropriately normalised number of thick points of random walk to a nondegenerate random variable. The normalising constant is different from that of the Gaussian free field, as conjectured in Jego (Electron J Probab 25:39, 2020). These results cover the entire subcritical regime. A key new idea for this characterisation is to introduce measures describing the intersection between different independent Brownian trajectories and how they interact to create thick points.</description><identifier>ISSN: 0010-3616</identifier><identifier>EISSN: 1432-0916</identifier><identifier>DOI: 10.1007/s00220-022-04570-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Brownian motion ; Classical and Quantum Gravitation ; Complex Systems ; Convergence ; Mathematical and Computational Physics ; Mathematical Physics ; Normalizing (statistics) ; Physics ; Physics and Astronomy ; Quantum Physics ; Random variables ; Random walk ; Relativity Theory ; Theoretical</subject><ispartof>Communications in mathematical physics, 2023-04, Vol.399 (2), p.971-1019</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-465aec15ff9d4e3f15d839b95dc34c2670c85f76091f3bc1af47a5e758d525253</citedby><cites>FETCH-LOGICAL-c363t-465aec15ff9d4e3f15d839b95dc34c2670c85f76091f3bc1af47a5e758d525253</cites><orcidid>0000-0001-9670-670X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00220-022-04570-z$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00220-022-04570-z$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Jego, Antoine</creatorcontrib><title>Characterisation of Planar Brownian Multiplicative Chaos</title><title>Communications in mathematical physics</title><addtitle>Commun. Math. Phys</addtitle><description>We characterise the multiplicative chaos measure
M
associated to planar Brownian motion introduced in Bass et al. (Ann Probab 22(2):566–625, 1994), Aïdékon et al. (Ann. Probab. 48(4), 1785–1825, 2020) and Jego (Ann Probab 48(4):1597–1643, 2020) by showing that it is the only random Borel measure satisfying a list of natural properties. These properties only serve to fix the average value of the measure and to express a spatial Markov property. As a consequence of our characterisation, we establish the scaling limit of the set of thick points of planar simple random walk, stopped at the first exit time of a domain, by showing the weak convergence towards
M
of the point measure associated to the thick points. In particular, we obtain the convergence of the appropriately normalised number of thick points of random walk to a nondegenerate random variable. The normalising constant is different from that of the Gaussian free field, as conjectured in Jego (Electron J Probab 25:39, 2020). These results cover the entire subcritical regime. A key new idea for this characterisation is to introduce measures describing the intersection between different independent Brownian trajectories and how they interact to create thick points.</description><subject>Brownian motion</subject><subject>Classical and Quantum Gravitation</subject><subject>Complex Systems</subject><subject>Convergence</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Physics</subject><subject>Normalizing (statistics)</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Random variables</subject><subject>Random walk</subject><subject>Relativity Theory</subject><subject>Theoretical</subject><issn>0010-3616</issn><issn>1432-0916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kE9LxDAQxYMoWFe_gKeC5-gkaZLmqMV_sKIHPYdsmmiX2tSkq7if3mgFbzLwhoH3mxkeQscETgmAPEsAlALOgqHiEvB2BxWkYnlUROyiAoAAZoKIfXSQ0hoAFBWiQHXzYqKxk4tdMlMXhjL48qE3g4nlRQwfQ2eG8m7TT93YdzY73l2ZkZAO0Z43fXJHv32Bnq4uH5sbvLy_vm3Ol9gywSZcCW6cJdx71VaOecLbmqmV4q1llaVCgq25lyK_6dnKEuMrabiTvG45zcUW6GTeO8bwtnFp0uuwiUM-qWkNVDGpGMsuOrtsDClF5_UYu1cTPzUB_Z2QnhPSWfRPQnqbITZDKZuHZxf_Vv9DfQE6KWig</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Jego, Antoine</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9670-670X</orcidid></search><sort><creationdate>20230401</creationdate><title>Characterisation of Planar Brownian Multiplicative Chaos</title><author>Jego, Antoine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-465aec15ff9d4e3f15d839b95dc34c2670c85f76091f3bc1af47a5e758d525253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Brownian motion</topic><topic>Classical and Quantum Gravitation</topic><topic>Complex Systems</topic><topic>Convergence</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Physics</topic><topic>Normalizing (statistics)</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Random variables</topic><topic>Random walk</topic><topic>Relativity Theory</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jego, Antoine</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Communications in mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jego, Antoine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterisation of Planar Brownian Multiplicative Chaos</atitle><jtitle>Communications in mathematical physics</jtitle><stitle>Commun. Math. Phys</stitle><date>2023-04-01</date><risdate>2023</risdate><volume>399</volume><issue>2</issue><spage>971</spage><epage>1019</epage><pages>971-1019</pages><issn>0010-3616</issn><eissn>1432-0916</eissn><abstract>We characterise the multiplicative chaos measure
M
associated to planar Brownian motion introduced in Bass et al. (Ann Probab 22(2):566–625, 1994), Aïdékon et al. (Ann. Probab. 48(4), 1785–1825, 2020) and Jego (Ann Probab 48(4):1597–1643, 2020) by showing that it is the only random Borel measure satisfying a list of natural properties. These properties only serve to fix the average value of the measure and to express a spatial Markov property. As a consequence of our characterisation, we establish the scaling limit of the set of thick points of planar simple random walk, stopped at the first exit time of a domain, by showing the weak convergence towards
M
of the point measure associated to the thick points. In particular, we obtain the convergence of the appropriately normalised number of thick points of random walk to a nondegenerate random variable. The normalising constant is different from that of the Gaussian free field, as conjectured in Jego (Electron J Probab 25:39, 2020). These results cover the entire subcritical regime. A key new idea for this characterisation is to introduce measures describing the intersection between different independent Brownian trajectories and how they interact to create thick points.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00220-022-04570-z</doi><tpages>49</tpages><orcidid>https://orcid.org/0000-0001-9670-670X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-3616 |
ispartof | Communications in mathematical physics, 2023-04, Vol.399 (2), p.971-1019 |
issn | 0010-3616 1432-0916 |
language | eng |
recordid | cdi_proquest_journals_2802937933 |
source | SpringerLink Journals |
subjects | Brownian motion Classical and Quantum Gravitation Complex Systems Convergence Mathematical and Computational Physics Mathematical Physics Normalizing (statistics) Physics Physics and Astronomy Quantum Physics Random variables Random walk Relativity Theory Theoretical |
title | Characterisation of Planar Brownian Multiplicative Chaos |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T12%3A39%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterisation%20of%20Planar%20Brownian%20Multiplicative%20Chaos&rft.jtitle=Communications%20in%20mathematical%20physics&rft.au=Jego,%20Antoine&rft.date=2023-04-01&rft.volume=399&rft.issue=2&rft.spage=971&rft.epage=1019&rft.pages=971-1019&rft.issn=0010-3616&rft.eissn=1432-0916&rft_id=info:doi/10.1007/s00220-022-04570-z&rft_dat=%3Cproquest_cross%3E2802937933%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2802937933&rft_id=info:pmid/&rfr_iscdi=true |