Can correcting feature location in simulated mean climate improve agreement on projected changes?
To the extent that deficiencies in GCM simulations of precipitation are due to persistent errors of location and timing, correcting the spatial and seasonal distribution of features would provide a physically based improvement in inter‐model agreement on future changes. We use a tool for the analysi...
Gespeichert in:
Veröffentlicht in: | Geophysical research letters 2013-01, Vol.40 (2), p.354-358 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 358 |
---|---|
container_issue | 2 |
container_start_page | 354 |
container_title | Geophysical research letters |
container_volume | 40 |
creator | Levy, Adam A. L. Ingram, William Jenkinson, Mark Huntingford, Chris Hugo Lambert, F. Allen, Myles |
description | To the extent that deficiencies in GCM simulations of precipitation are due to persistent errors of location and timing, correcting the spatial and seasonal distribution of features would provide a physically based improvement in inter‐model agreement on future changes. We use a tool for the analysis of medical images to warp the precipitation climatologies of 14 General Circulation Models (GCMs) closer to a reanalysis of observations, rather than adjusting intensities locally as in conventional bias correction techniques. These warps are then applied to the same GCMs' simulated changes in mean climate under a CO2 quadrupling experiment. We find that the warping process not only makes GCMs' historical climatologies more closely resemble reanalysis but also reduces the disagreement between the models' response to this external forcing. Developing a tool that is tailored for the specific requirements of climate fields may provide further improvement, particularly in combination with local bias correction techniques.
Key Points
Differences between GCM precipitation projections arise from climatology errors
Errors in climatology can be corrected using medical registration techniques
These corrections improve the agreement in precipitation projections |
doi_str_mv | 10.1002/2012GL053964 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2802769776</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3545517471</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4216-23fd933a038a3f57da3b5781684788b61e0149018848658c89e5678d55004c6e3</originalsourceid><addsrcrecordid>eNp9kE1PGzEQhq0KpIbQW3-ApYobC-OPtb2nCkU0IC2pqFr1aBlnNnW6H2BvKPz7OgQhTjl5PHred-YdQj4zOGMA_JwD4_MaSlEp-YFMWCVlYQD0AZkAVLnmWn0kRymtAUCAYBPiZq6nfogR_Rj6FW3QjZuItB28G8PQ09DTFLpN60Zc0g63dBu6_KOhu4_DI1K3iogd9iPNeG6ts1Vm_R_XrzB9PSaHjWsTfnp9p-TXt8ufs6ui_j6_nl3UhZecqYKLZlkJ4UAYJ5pSL524K7VhykhtzJ1iCExWwIyRRpXGmwpLpc2yLAGkVyim5MvON6_wsME02vWwiX0eabmBnLzSWu2jmJIcpAC1pU53lI9DShEbex9z6PhsGdjtqe37U2f85NXUJe_aJrreh_SmybOVYJxlju-4f6HF572edv6jzsleNi52opBGfHoTufjXKi10aX8v5nbBbutbc6XtjfgPWZeY7g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1642043066</pqid></control><display><type>article</type><title>Can correcting feature location in simulated mean climate improve agreement on projected changes?</title><source>Access via Wiley Online Library</source><source>Wiley-Blackwell AGU Digital Library</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><creator>Levy, Adam A. L. ; Ingram, William ; Jenkinson, Mark ; Huntingford, Chris ; Hugo Lambert, F. ; Allen, Myles</creator><creatorcontrib>Levy, Adam A. L. ; Ingram, William ; Jenkinson, Mark ; Huntingford, Chris ; Hugo Lambert, F. ; Allen, Myles</creatorcontrib><description>To the extent that deficiencies in GCM simulations of precipitation are due to persistent errors of location and timing, correcting the spatial and seasonal distribution of features would provide a physically based improvement in inter‐model agreement on future changes. We use a tool for the analysis of medical images to warp the precipitation climatologies of 14 General Circulation Models (GCMs) closer to a reanalysis of observations, rather than adjusting intensities locally as in conventional bias correction techniques. These warps are then applied to the same GCMs' simulated changes in mean climate under a CO2 quadrupling experiment. We find that the warping process not only makes GCMs' historical climatologies more closely resemble reanalysis but also reduces the disagreement between the models' response to this external forcing. Developing a tool that is tailored for the specific requirements of climate fields may provide further improvement, particularly in combination with local bias correction techniques.
Key Points
Differences between GCM precipitation projections arise from climatology errors
Errors in climatology can be corrected using medical registration techniques
These corrections improve the agreement in precipitation projections</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1002/2012GL053964</identifier><identifier>CODEN: GPRLAJ</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>Agreements ; Bias ; Carbon dioxide ; Climate ; Climate Change ; CMIP5 ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; General circulation models ; Medical imaging ; Precipitation ; Seasonal distribution ; Simulation ; Warping</subject><ispartof>Geophysical research letters, 2013-01, Vol.40 (2), p.354-358</ispartof><rights>2012. American Geophysical Union. All Rights Reserved.</rights><rights>2014 INIST-CNRS</rights><rights>2013. American Geophysical Union. All Rights Reserved.</rights><rights>Copyright Blackwell Publishing Ltd. Jan 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4216-23fd933a038a3f57da3b5781684788b61e0149018848658c89e5678d55004c6e3</citedby><cites>FETCH-LOGICAL-c4216-23fd933a038a3f57da3b5781684788b61e0149018848658c89e5678d55004c6e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2012GL053964$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2012GL053964$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,11514,27924,27925,45574,45575,46409,46468,46833,46892</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27663121$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Levy, Adam A. L.</creatorcontrib><creatorcontrib>Ingram, William</creatorcontrib><creatorcontrib>Jenkinson, Mark</creatorcontrib><creatorcontrib>Huntingford, Chris</creatorcontrib><creatorcontrib>Hugo Lambert, F.</creatorcontrib><creatorcontrib>Allen, Myles</creatorcontrib><title>Can correcting feature location in simulated mean climate improve agreement on projected changes?</title><title>Geophysical research letters</title><addtitle>Geophys. Res. Lett</addtitle><description>To the extent that deficiencies in GCM simulations of precipitation are due to persistent errors of location and timing, correcting the spatial and seasonal distribution of features would provide a physically based improvement in inter‐model agreement on future changes. We use a tool for the analysis of medical images to warp the precipitation climatologies of 14 General Circulation Models (GCMs) closer to a reanalysis of observations, rather than adjusting intensities locally as in conventional bias correction techniques. These warps are then applied to the same GCMs' simulated changes in mean climate under a CO2 quadrupling experiment. We find that the warping process not only makes GCMs' historical climatologies more closely resemble reanalysis but also reduces the disagreement between the models' response to this external forcing. Developing a tool that is tailored for the specific requirements of climate fields may provide further improvement, particularly in combination with local bias correction techniques.
Key Points
Differences between GCM precipitation projections arise from climatology errors
Errors in climatology can be corrected using medical registration techniques
These corrections improve the agreement in precipitation projections</description><subject>Agreements</subject><subject>Bias</subject><subject>Carbon dioxide</subject><subject>Climate</subject><subject>Climate Change</subject><subject>CMIP5</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>General circulation models</subject><subject>Medical imaging</subject><subject>Precipitation</subject><subject>Seasonal distribution</subject><subject>Simulation</subject><subject>Warping</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PGzEQhq0KpIbQW3-ApYobC-OPtb2nCkU0IC2pqFr1aBlnNnW6H2BvKPz7OgQhTjl5PHred-YdQj4zOGMA_JwD4_MaSlEp-YFMWCVlYQD0AZkAVLnmWn0kRymtAUCAYBPiZq6nfogR_Rj6FW3QjZuItB28G8PQ09DTFLpN60Zc0g63dBu6_KOhu4_DI1K3iogd9iPNeG6ts1Vm_R_XrzB9PSaHjWsTfnp9p-TXt8ufs6ui_j6_nl3UhZecqYKLZlkJ4UAYJ5pSL524K7VhykhtzJ1iCExWwIyRRpXGmwpLpc2yLAGkVyim5MvON6_wsME02vWwiX0eabmBnLzSWu2jmJIcpAC1pU53lI9DShEbex9z6PhsGdjtqe37U2f85NXUJe_aJrreh_SmybOVYJxlju-4f6HF572edv6jzsleNi52opBGfHoTufjXKi10aX8v5nbBbutbc6XtjfgPWZeY7g</recordid><startdate>20130128</startdate><enddate>20130128</enddate><creator>Levy, Adam A. L.</creator><creator>Ingram, William</creator><creator>Jenkinson, Mark</creator><creator>Huntingford, Chris</creator><creator>Hugo Lambert, F.</creator><creator>Allen, Myles</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><general>John Wiley & Sons, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope></search><sort><creationdate>20130128</creationdate><title>Can correcting feature location in simulated mean climate improve agreement on projected changes?</title><author>Levy, Adam A. L. ; Ingram, William ; Jenkinson, Mark ; Huntingford, Chris ; Hugo Lambert, F. ; Allen, Myles</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4216-23fd933a038a3f57da3b5781684788b61e0149018848658c89e5678d55004c6e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Agreements</topic><topic>Bias</topic><topic>Carbon dioxide</topic><topic>Climate</topic><topic>Climate Change</topic><topic>CMIP5</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>General circulation models</topic><topic>Medical imaging</topic><topic>Precipitation</topic><topic>Seasonal distribution</topic><topic>Simulation</topic><topic>Warping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Levy, Adam A. L.</creatorcontrib><creatorcontrib>Ingram, William</creatorcontrib><creatorcontrib>Jenkinson, Mark</creatorcontrib><creatorcontrib>Huntingford, Chris</creatorcontrib><creatorcontrib>Hugo Lambert, F.</creatorcontrib><creatorcontrib>Allen, Myles</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Levy, Adam A. L.</au><au>Ingram, William</au><au>Jenkinson, Mark</au><au>Huntingford, Chris</au><au>Hugo Lambert, F.</au><au>Allen, Myles</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Can correcting feature location in simulated mean climate improve agreement on projected changes?</atitle><jtitle>Geophysical research letters</jtitle><addtitle>Geophys. Res. Lett</addtitle><date>2013-01-28</date><risdate>2013</risdate><volume>40</volume><issue>2</issue><spage>354</spage><epage>358</epage><pages>354-358</pages><issn>0094-8276</issn><eissn>1944-8007</eissn><coden>GPRLAJ</coden><abstract>To the extent that deficiencies in GCM simulations of precipitation are due to persistent errors of location and timing, correcting the spatial and seasonal distribution of features would provide a physically based improvement in inter‐model agreement on future changes. We use a tool for the analysis of medical images to warp the precipitation climatologies of 14 General Circulation Models (GCMs) closer to a reanalysis of observations, rather than adjusting intensities locally as in conventional bias correction techniques. These warps are then applied to the same GCMs' simulated changes in mean climate under a CO2 quadrupling experiment. We find that the warping process not only makes GCMs' historical climatologies more closely resemble reanalysis but also reduces the disagreement between the models' response to this external forcing. Developing a tool that is tailored for the specific requirements of climate fields may provide further improvement, particularly in combination with local bias correction techniques.
Key Points
Differences between GCM precipitation projections arise from climatology errors
Errors in climatology can be corrected using medical registration techniques
These corrections improve the agreement in precipitation projections</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2012GL053964</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-8276 |
ispartof | Geophysical research letters, 2013-01, Vol.40 (2), p.354-358 |
issn | 0094-8276 1944-8007 |
language | eng |
recordid | cdi_proquest_journals_2802769776 |
source | Access via Wiley Online Library; Wiley-Blackwell AGU Digital Library; EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection) |
subjects | Agreements Bias Carbon dioxide Climate Climate Change CMIP5 Earth sciences Earth, ocean, space Exact sciences and technology General circulation models Medical imaging Precipitation Seasonal distribution Simulation Warping |
title | Can correcting feature location in simulated mean climate improve agreement on projected changes? |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T18%3A48%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Can%20correcting%20feature%20location%20in%20simulated%20mean%20climate%20improve%20agreement%20on%20projected%20changes?&rft.jtitle=Geophysical%20research%20letters&rft.au=Levy,%20Adam%20A.%20L.&rft.date=2013-01-28&rft.volume=40&rft.issue=2&rft.spage=354&rft.epage=358&rft.pages=354-358&rft.issn=0094-8276&rft.eissn=1944-8007&rft.coden=GPRLAJ&rft_id=info:doi/10.1002/2012GL053964&rft_dat=%3Cproquest_cross%3E3545517471%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1642043066&rft_id=info:pmid/&rfr_iscdi=true |