Nonlinear response of N2O and N2 emissions to increasing soil nitrate availability in a tropical sugarcane soil

Purpose The reduction of the greenhouse gas nitrous oxide (N 2 O) to dinitrogen (N 2 ) via denitrification and N 2 O source partitioning between nitrification and denitrification remain major uncertainties in sugarcane systems. We therefore investigated magnitude and product stoichiometry of denitri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of soils and sediments 2023-05, Vol.23 (5), p.2065-2071
Hauptverfasser: Kirkby, Robert, Friedl, Johannes, Takeda, Naoya, De Rosa, Daniele, Rowlings, David W., Grace, Peter R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2071
container_issue 5
container_start_page 2065
container_title Journal of soils and sediments
container_volume 23
creator Kirkby, Robert
Friedl, Johannes
Takeda, Naoya
De Rosa, Daniele
Rowlings, David W.
Grace, Peter R.
description Purpose The reduction of the greenhouse gas nitrous oxide (N 2 O) to dinitrogen (N 2 ) via denitrification and N 2 O source partitioning between nitrification and denitrification remain major uncertainties in sugarcane systems. We therefore investigated magnitude and product stoichiometry of denitrification and production pathways of N 2 O from a tropical sugarcane soil in response to increasing soil nitrate (NO 3 − ) availability. Methods Microcosms were established using a tropical sugarcane soil (Qld, Australia) and emissions of N 2 O and N 2 were measured following fertilisation with 15 NO 3 − –N equivalent to 25, 50 and 100 μg N g −1 soil, simulating soil NO 3 − contents previously observed in situ, and mimicking flood irrigation by wetting the soil close to saturation. Results Cumulative N 2 O emissions increased exponentially with NO 3 − availability, while cumulative N 2 emissions followed an exponential increase to maximum. Average daily N 2 emissions exceeded 5 µg N 2 –N g soil −1 and accounted for > 99% of denitrification. The response of N 2 O suggests preferential NO 3 − reduction with increasing NO 3 − availability, increasing N 2 O even when NO 3 − levels had only a diminishing effect on the overall denitrification rate. The fraction of N 2 O emitted from denitrification increased with NO 3 − availability, and was a function of soil water, NO 3 − and heterotrophic soil respiration. Conclusions Our findings show the exponential increase of N 2 O driven by excess NO 3 − , even though the complete reduction to N 2 dominated denitrification. The low N 2 O/(N 2 O + N 2 ) product ratio questions the use of N 2 O as proxy for overall denitrification rates, highlighting the need for in-situ N 2 measurements to account for denitrification losses from sugarcane systems.
doi_str_mv 10.1007/s11368-023-03482-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2802663191</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2802663191</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-a505f4036bb1b75345d317461394fd433d33326824f48d48bc6742120180d7743</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWKsv4CrgOprkZpJ0KcU_KO1G1yEzkykp02RMpkLfxmfxyYyt4M7VPXC-cy4chK4ZvWWUqrvMGEhNKAdCQWhO-AmaMMkEUULT06IFzAhlVJ-ji5w3lIIq9gQNyxh6H5xNOLk8xJAdjh1e8tXXpw1tEdhtfc6-OHiM2IcmOZt9WOMcfY-DH5MdHbYf1ve29r0f9wXCFo8pDr6xPc67tU2NDe6QuERnne2zu_q9U_T2-PA6fyaL1dPL_H5BGpAwElvRqhMUZF2zWlUgqhaYEpLBTHStAGgBgEvNRSd0K3TdSCU445Rp2iolYIpujr1Diu87l0ezibsUykvDNeVSApuxQvEj1aSYc3KdGZLf2rQ3jJqfZc1xWVOWNYdlDS8hOIZygcPapb_qf1Lf5F97Tw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2802663191</pqid></control><display><type>article</type><title>Nonlinear response of N2O and N2 emissions to increasing soil nitrate availability in a tropical sugarcane soil</title><source>SpringerNature Journals</source><creator>Kirkby, Robert ; Friedl, Johannes ; Takeda, Naoya ; De Rosa, Daniele ; Rowlings, David W. ; Grace, Peter R.</creator><creatorcontrib>Kirkby, Robert ; Friedl, Johannes ; Takeda, Naoya ; De Rosa, Daniele ; Rowlings, David W. ; Grace, Peter R.</creatorcontrib><description>Purpose The reduction of the greenhouse gas nitrous oxide (N 2 O) to dinitrogen (N 2 ) via denitrification and N 2 O source partitioning between nitrification and denitrification remain major uncertainties in sugarcane systems. We therefore investigated magnitude and product stoichiometry of denitrification and production pathways of N 2 O from a tropical sugarcane soil in response to increasing soil nitrate (NO 3 − ) availability. Methods Microcosms were established using a tropical sugarcane soil (Qld, Australia) and emissions of N 2 O and N 2 were measured following fertilisation with 15 NO 3 − –N equivalent to 25, 50 and 100 μg N g −1 soil, simulating soil NO 3 − contents previously observed in situ, and mimicking flood irrigation by wetting the soil close to saturation. Results Cumulative N 2 O emissions increased exponentially with NO 3 − availability, while cumulative N 2 emissions followed an exponential increase to maximum. Average daily N 2 emissions exceeded 5 µg N 2 –N g soil −1 and accounted for &gt; 99% of denitrification. The response of N 2 O suggests preferential NO 3 − reduction with increasing NO 3 − availability, increasing N 2 O even when NO 3 − levels had only a diminishing effect on the overall denitrification rate. The fraction of N 2 O emitted from denitrification increased with NO 3 − availability, and was a function of soil water, NO 3 − and heterotrophic soil respiration. Conclusions Our findings show the exponential increase of N 2 O driven by excess NO 3 − , even though the complete reduction to N 2 dominated denitrification. The low N 2 O/(N 2 O + N 2 ) product ratio questions the use of N 2 O as proxy for overall denitrification rates, highlighting the need for in-situ N 2 measurements to account for denitrification losses from sugarcane systems.</description><identifier>ISSN: 1439-0108</identifier><identifier>EISSN: 1614-7480</identifier><identifier>DOI: 10.1007/s11368-023-03482-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Availability ; Denitrification ; Earth and Environmental Science ; Emission measurements ; Emissions ; Environment ; Environmental Physics ; Fertilization ; Flood irrigation ; Greenhouse gases ; Moisture content ; Nitrates ; Nitrification ; Nitrous oxide ; Nonlinear response ; Reduction ; Saturation ; Sec 1 • Soil Organic Matter Dynamics and Nutrient Cycling • Short Original Communication ; Soil ; Soil Science &amp; Conservation ; Soil water ; Soils ; Stoichiometry ; Sugarcane ; Wetting</subject><ispartof>Journal of soils and sediments, 2023-05, Vol.23 (5), p.2065-2071</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-a505f4036bb1b75345d317461394fd433d33326824f48d48bc6742120180d7743</citedby><cites>FETCH-LOGICAL-c363t-a505f4036bb1b75345d317461394fd433d33326824f48d48bc6742120180d7743</cites><orcidid>0000-0002-1618-9309 ; 0000-0003-4194-8407 ; 0000-0002-0441-7722 ; 0000-0003-4136-4129 ; 0000-0003-0468-916X ; 0000-0002-3977-2804</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11368-023-03482-2$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11368-023-03482-2$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Kirkby, Robert</creatorcontrib><creatorcontrib>Friedl, Johannes</creatorcontrib><creatorcontrib>Takeda, Naoya</creatorcontrib><creatorcontrib>De Rosa, Daniele</creatorcontrib><creatorcontrib>Rowlings, David W.</creatorcontrib><creatorcontrib>Grace, Peter R.</creatorcontrib><title>Nonlinear response of N2O and N2 emissions to increasing soil nitrate availability in a tropical sugarcane soil</title><title>Journal of soils and sediments</title><addtitle>J Soils Sediments</addtitle><description>Purpose The reduction of the greenhouse gas nitrous oxide (N 2 O) to dinitrogen (N 2 ) via denitrification and N 2 O source partitioning between nitrification and denitrification remain major uncertainties in sugarcane systems. We therefore investigated magnitude and product stoichiometry of denitrification and production pathways of N 2 O from a tropical sugarcane soil in response to increasing soil nitrate (NO 3 − ) availability. Methods Microcosms were established using a tropical sugarcane soil (Qld, Australia) and emissions of N 2 O and N 2 were measured following fertilisation with 15 NO 3 − –N equivalent to 25, 50 and 100 μg N g −1 soil, simulating soil NO 3 − contents previously observed in situ, and mimicking flood irrigation by wetting the soil close to saturation. Results Cumulative N 2 O emissions increased exponentially with NO 3 − availability, while cumulative N 2 emissions followed an exponential increase to maximum. Average daily N 2 emissions exceeded 5 µg N 2 –N g soil −1 and accounted for &gt; 99% of denitrification. The response of N 2 O suggests preferential NO 3 − reduction with increasing NO 3 − availability, increasing N 2 O even when NO 3 − levels had only a diminishing effect on the overall denitrification rate. The fraction of N 2 O emitted from denitrification increased with NO 3 − availability, and was a function of soil water, NO 3 − and heterotrophic soil respiration. Conclusions Our findings show the exponential increase of N 2 O driven by excess NO 3 − , even though the complete reduction to N 2 dominated denitrification. The low N 2 O/(N 2 O + N 2 ) product ratio questions the use of N 2 O as proxy for overall denitrification rates, highlighting the need for in-situ N 2 measurements to account for denitrification losses from sugarcane systems.</description><subject>Availability</subject><subject>Denitrification</subject><subject>Earth and Environmental Science</subject><subject>Emission measurements</subject><subject>Emissions</subject><subject>Environment</subject><subject>Environmental Physics</subject><subject>Fertilization</subject><subject>Flood irrigation</subject><subject>Greenhouse gases</subject><subject>Moisture content</subject><subject>Nitrates</subject><subject>Nitrification</subject><subject>Nitrous oxide</subject><subject>Nonlinear response</subject><subject>Reduction</subject><subject>Saturation</subject><subject>Sec 1 • Soil Organic Matter Dynamics and Nutrient Cycling • Short Original Communication</subject><subject>Soil</subject><subject>Soil Science &amp; Conservation</subject><subject>Soil water</subject><subject>Soils</subject><subject>Stoichiometry</subject><subject>Sugarcane</subject><subject>Wetting</subject><issn>1439-0108</issn><issn>1614-7480</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kM1KAzEUhYMoWKsv4CrgOprkZpJ0KcU_KO1G1yEzkykp02RMpkLfxmfxyYyt4M7VPXC-cy4chK4ZvWWUqrvMGEhNKAdCQWhO-AmaMMkEUULT06IFzAhlVJ-ji5w3lIIq9gQNyxh6H5xNOLk8xJAdjh1e8tXXpw1tEdhtfc6-OHiM2IcmOZt9WOMcfY-DH5MdHbYf1ve29r0f9wXCFo8pDr6xPc67tU2NDe6QuERnne2zu_q9U_T2-PA6fyaL1dPL_H5BGpAwElvRqhMUZF2zWlUgqhaYEpLBTHStAGgBgEvNRSd0K3TdSCU445Rp2iolYIpujr1Diu87l0ezibsUykvDNeVSApuxQvEj1aSYc3KdGZLf2rQ3jJqfZc1xWVOWNYdlDS8hOIZygcPapb_qf1Lf5F97Tw</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Kirkby, Robert</creator><creator>Friedl, Johannes</creator><creator>Takeda, Naoya</creator><creator>De Rosa, Daniele</creator><creator>Rowlings, David W.</creator><creator>Grace, Peter R.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7UA</scope><scope>7X2</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>H97</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>M0K</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-1618-9309</orcidid><orcidid>https://orcid.org/0000-0003-4194-8407</orcidid><orcidid>https://orcid.org/0000-0002-0441-7722</orcidid><orcidid>https://orcid.org/0000-0003-4136-4129</orcidid><orcidid>https://orcid.org/0000-0003-0468-916X</orcidid><orcidid>https://orcid.org/0000-0002-3977-2804</orcidid></search><sort><creationdate>20230501</creationdate><title>Nonlinear response of N2O and N2 emissions to increasing soil nitrate availability in a tropical sugarcane soil</title><author>Kirkby, Robert ; Friedl, Johannes ; Takeda, Naoya ; De Rosa, Daniele ; Rowlings, David W. ; Grace, Peter R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-a505f4036bb1b75345d317461394fd433d33326824f48d48bc6742120180d7743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Availability</topic><topic>Denitrification</topic><topic>Earth and Environmental Science</topic><topic>Emission measurements</topic><topic>Emissions</topic><topic>Environment</topic><topic>Environmental Physics</topic><topic>Fertilization</topic><topic>Flood irrigation</topic><topic>Greenhouse gases</topic><topic>Moisture content</topic><topic>Nitrates</topic><topic>Nitrification</topic><topic>Nitrous oxide</topic><topic>Nonlinear response</topic><topic>Reduction</topic><topic>Saturation</topic><topic>Sec 1 • Soil Organic Matter Dynamics and Nutrient Cycling • Short Original Communication</topic><topic>Soil</topic><topic>Soil Science &amp; Conservation</topic><topic>Soil water</topic><topic>Soils</topic><topic>Stoichiometry</topic><topic>Sugarcane</topic><topic>Wetting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kirkby, Robert</creatorcontrib><creatorcontrib>Friedl, Johannes</creatorcontrib><creatorcontrib>Takeda, Naoya</creatorcontrib><creatorcontrib>De Rosa, Daniele</creatorcontrib><creatorcontrib>Rowlings, David W.</creatorcontrib><creatorcontrib>Grace, Peter R.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Agricultural Science Database</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Journal of soils and sediments</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kirkby, Robert</au><au>Friedl, Johannes</au><au>Takeda, Naoya</au><au>De Rosa, Daniele</au><au>Rowlings, David W.</au><au>Grace, Peter R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear response of N2O and N2 emissions to increasing soil nitrate availability in a tropical sugarcane soil</atitle><jtitle>Journal of soils and sediments</jtitle><stitle>J Soils Sediments</stitle><date>2023-05-01</date><risdate>2023</risdate><volume>23</volume><issue>5</issue><spage>2065</spage><epage>2071</epage><pages>2065-2071</pages><issn>1439-0108</issn><eissn>1614-7480</eissn><abstract>Purpose The reduction of the greenhouse gas nitrous oxide (N 2 O) to dinitrogen (N 2 ) via denitrification and N 2 O source partitioning between nitrification and denitrification remain major uncertainties in sugarcane systems. We therefore investigated magnitude and product stoichiometry of denitrification and production pathways of N 2 O from a tropical sugarcane soil in response to increasing soil nitrate (NO 3 − ) availability. Methods Microcosms were established using a tropical sugarcane soil (Qld, Australia) and emissions of N 2 O and N 2 were measured following fertilisation with 15 NO 3 − –N equivalent to 25, 50 and 100 μg N g −1 soil, simulating soil NO 3 − contents previously observed in situ, and mimicking flood irrigation by wetting the soil close to saturation. Results Cumulative N 2 O emissions increased exponentially with NO 3 − availability, while cumulative N 2 emissions followed an exponential increase to maximum. Average daily N 2 emissions exceeded 5 µg N 2 –N g soil −1 and accounted for &gt; 99% of denitrification. The response of N 2 O suggests preferential NO 3 − reduction with increasing NO 3 − availability, increasing N 2 O even when NO 3 − levels had only a diminishing effect on the overall denitrification rate. The fraction of N 2 O emitted from denitrification increased with NO 3 − availability, and was a function of soil water, NO 3 − and heterotrophic soil respiration. Conclusions Our findings show the exponential increase of N 2 O driven by excess NO 3 − , even though the complete reduction to N 2 dominated denitrification. The low N 2 O/(N 2 O + N 2 ) product ratio questions the use of N 2 O as proxy for overall denitrification rates, highlighting the need for in-situ N 2 measurements to account for denitrification losses from sugarcane systems.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11368-023-03482-2</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-1618-9309</orcidid><orcidid>https://orcid.org/0000-0003-4194-8407</orcidid><orcidid>https://orcid.org/0000-0002-0441-7722</orcidid><orcidid>https://orcid.org/0000-0003-4136-4129</orcidid><orcidid>https://orcid.org/0000-0003-0468-916X</orcidid><orcidid>https://orcid.org/0000-0002-3977-2804</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1439-0108
ispartof Journal of soils and sediments, 2023-05, Vol.23 (5), p.2065-2071
issn 1439-0108
1614-7480
language eng
recordid cdi_proquest_journals_2802663191
source SpringerNature Journals
subjects Availability
Denitrification
Earth and Environmental Science
Emission measurements
Emissions
Environment
Environmental Physics
Fertilization
Flood irrigation
Greenhouse gases
Moisture content
Nitrates
Nitrification
Nitrous oxide
Nonlinear response
Reduction
Saturation
Sec 1 • Soil Organic Matter Dynamics and Nutrient Cycling • Short Original Communication
Soil
Soil Science & Conservation
Soil water
Soils
Stoichiometry
Sugarcane
Wetting
title Nonlinear response of N2O and N2 emissions to increasing soil nitrate availability in a tropical sugarcane soil
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T12%3A14%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20response%20of%20N2O%C2%A0and%20N2%20emissions%20to%20increasing%20soil%20nitrate%20availability%20in%20a%20tropical%20sugarcane%20soil&rft.jtitle=Journal%20of%20soils%20and%20sediments&rft.au=Kirkby,%20Robert&rft.date=2023-05-01&rft.volume=23&rft.issue=5&rft.spage=2065&rft.epage=2071&rft.pages=2065-2071&rft.issn=1439-0108&rft.eissn=1614-7480&rft_id=info:doi/10.1007/s11368-023-03482-2&rft_dat=%3Cproquest_cross%3E2802663191%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2802663191&rft_id=info:pmid/&rfr_iscdi=true