Nonlinear response of N2O and N2 emissions to increasing soil nitrate availability in a tropical sugarcane soil
Purpose The reduction of the greenhouse gas nitrous oxide (N 2 O) to dinitrogen (N 2 ) via denitrification and N 2 O source partitioning between nitrification and denitrification remain major uncertainties in sugarcane systems. We therefore investigated magnitude and product stoichiometry of denitri...
Gespeichert in:
Veröffentlicht in: | Journal of soils and sediments 2023-05, Vol.23 (5), p.2065-2071 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2071 |
---|---|
container_issue | 5 |
container_start_page | 2065 |
container_title | Journal of soils and sediments |
container_volume | 23 |
creator | Kirkby, Robert Friedl, Johannes Takeda, Naoya De Rosa, Daniele Rowlings, David W. Grace, Peter R. |
description | Purpose
The reduction of the greenhouse gas nitrous oxide (N
2
O) to dinitrogen (N
2
) via denitrification and N
2
O source partitioning between nitrification and denitrification remain major uncertainties in sugarcane systems. We therefore investigated magnitude and product stoichiometry of denitrification and production pathways of N
2
O from a tropical sugarcane soil in response to increasing soil nitrate (NO
3
−
) availability.
Methods
Microcosms were established using a tropical sugarcane soil (Qld, Australia) and emissions of N
2
O and N
2
were measured following fertilisation with
15
NO
3
−
–N equivalent to 25, 50 and 100 μg N g
−1
soil, simulating soil NO
3
−
contents previously observed in situ, and mimicking flood irrigation by wetting the soil close to saturation.
Results
Cumulative N
2
O emissions increased exponentially with NO
3
−
availability, while cumulative N
2
emissions followed an exponential increase to maximum. Average daily N
2
emissions exceeded 5 µg N
2
–N g soil
−1
and accounted for > 99% of denitrification. The response of N
2
O suggests preferential NO
3
−
reduction with increasing NO
3
−
availability, increasing N
2
O even when NO
3
−
levels had only a diminishing effect on the overall denitrification rate. The fraction of N
2
O emitted from denitrification increased with NO
3
−
availability, and was a function of soil water, NO
3
−
and heterotrophic soil respiration.
Conclusions
Our findings show the exponential increase of N
2
O driven by excess NO
3
−
, even though the complete reduction to N
2
dominated denitrification. The low N
2
O/(N
2
O + N
2
) product ratio questions the use of N
2
O as proxy for overall denitrification rates, highlighting the need for in-situ N
2
measurements to account for denitrification losses from sugarcane systems. |
doi_str_mv | 10.1007/s11368-023-03482-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2802663191</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2802663191</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-a505f4036bb1b75345d317461394fd433d33326824f48d48bc6742120180d7743</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWKsv4CrgOprkZpJ0KcU_KO1G1yEzkykp02RMpkLfxmfxyYyt4M7VPXC-cy4chK4ZvWWUqrvMGEhNKAdCQWhO-AmaMMkEUULT06IFzAhlVJ-ji5w3lIIq9gQNyxh6H5xNOLk8xJAdjh1e8tXXpw1tEdhtfc6-OHiM2IcmOZt9WOMcfY-DH5MdHbYf1ve29r0f9wXCFo8pDr6xPc67tU2NDe6QuERnne2zu_q9U_T2-PA6fyaL1dPL_H5BGpAwElvRqhMUZF2zWlUgqhaYEpLBTHStAGgBgEvNRSd0K3TdSCU445Rp2iolYIpujr1Diu87l0ezibsUykvDNeVSApuxQvEj1aSYc3KdGZLf2rQ3jJqfZc1xWVOWNYdlDS8hOIZygcPapb_qf1Lf5F97Tw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2802663191</pqid></control><display><type>article</type><title>Nonlinear response of N2O and N2 emissions to increasing soil nitrate availability in a tropical sugarcane soil</title><source>SpringerNature Journals</source><creator>Kirkby, Robert ; Friedl, Johannes ; Takeda, Naoya ; De Rosa, Daniele ; Rowlings, David W. ; Grace, Peter R.</creator><creatorcontrib>Kirkby, Robert ; Friedl, Johannes ; Takeda, Naoya ; De Rosa, Daniele ; Rowlings, David W. ; Grace, Peter R.</creatorcontrib><description>Purpose
The reduction of the greenhouse gas nitrous oxide (N
2
O) to dinitrogen (N
2
) via denitrification and N
2
O source partitioning between nitrification and denitrification remain major uncertainties in sugarcane systems. We therefore investigated magnitude and product stoichiometry of denitrification and production pathways of N
2
O from a tropical sugarcane soil in response to increasing soil nitrate (NO
3
−
) availability.
Methods
Microcosms were established using a tropical sugarcane soil (Qld, Australia) and emissions of N
2
O and N
2
were measured following fertilisation with
15
NO
3
−
–N equivalent to 25, 50 and 100 μg N g
−1
soil, simulating soil NO
3
−
contents previously observed in situ, and mimicking flood irrigation by wetting the soil close to saturation.
Results
Cumulative N
2
O emissions increased exponentially with NO
3
−
availability, while cumulative N
2
emissions followed an exponential increase to maximum. Average daily N
2
emissions exceeded 5 µg N
2
–N g soil
−1
and accounted for > 99% of denitrification. The response of N
2
O suggests preferential NO
3
−
reduction with increasing NO
3
−
availability, increasing N
2
O even when NO
3
−
levels had only a diminishing effect on the overall denitrification rate. The fraction of N
2
O emitted from denitrification increased with NO
3
−
availability, and was a function of soil water, NO
3
−
and heterotrophic soil respiration.
Conclusions
Our findings show the exponential increase of N
2
O driven by excess NO
3
−
, even though the complete reduction to N
2
dominated denitrification. The low N
2
O/(N
2
O + N
2
) product ratio questions the use of N
2
O as proxy for overall denitrification rates, highlighting the need for in-situ N
2
measurements to account for denitrification losses from sugarcane systems.</description><identifier>ISSN: 1439-0108</identifier><identifier>EISSN: 1614-7480</identifier><identifier>DOI: 10.1007/s11368-023-03482-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Availability ; Denitrification ; Earth and Environmental Science ; Emission measurements ; Emissions ; Environment ; Environmental Physics ; Fertilization ; Flood irrigation ; Greenhouse gases ; Moisture content ; Nitrates ; Nitrification ; Nitrous oxide ; Nonlinear response ; Reduction ; Saturation ; Sec 1 • Soil Organic Matter Dynamics and Nutrient Cycling • Short Original Communication ; Soil ; Soil Science & Conservation ; Soil water ; Soils ; Stoichiometry ; Sugarcane ; Wetting</subject><ispartof>Journal of soils and sediments, 2023-05, Vol.23 (5), p.2065-2071</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-a505f4036bb1b75345d317461394fd433d33326824f48d48bc6742120180d7743</citedby><cites>FETCH-LOGICAL-c363t-a505f4036bb1b75345d317461394fd433d33326824f48d48bc6742120180d7743</cites><orcidid>0000-0002-1618-9309 ; 0000-0003-4194-8407 ; 0000-0002-0441-7722 ; 0000-0003-4136-4129 ; 0000-0003-0468-916X ; 0000-0002-3977-2804</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11368-023-03482-2$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11368-023-03482-2$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Kirkby, Robert</creatorcontrib><creatorcontrib>Friedl, Johannes</creatorcontrib><creatorcontrib>Takeda, Naoya</creatorcontrib><creatorcontrib>De Rosa, Daniele</creatorcontrib><creatorcontrib>Rowlings, David W.</creatorcontrib><creatorcontrib>Grace, Peter R.</creatorcontrib><title>Nonlinear response of N2O and N2 emissions to increasing soil nitrate availability in a tropical sugarcane soil</title><title>Journal of soils and sediments</title><addtitle>J Soils Sediments</addtitle><description>Purpose
The reduction of the greenhouse gas nitrous oxide (N
2
O) to dinitrogen (N
2
) via denitrification and N
2
O source partitioning between nitrification and denitrification remain major uncertainties in sugarcane systems. We therefore investigated magnitude and product stoichiometry of denitrification and production pathways of N
2
O from a tropical sugarcane soil in response to increasing soil nitrate (NO
3
−
) availability.
Methods
Microcosms were established using a tropical sugarcane soil (Qld, Australia) and emissions of N
2
O and N
2
were measured following fertilisation with
15
NO
3
−
–N equivalent to 25, 50 and 100 μg N g
−1
soil, simulating soil NO
3
−
contents previously observed in situ, and mimicking flood irrigation by wetting the soil close to saturation.
Results
Cumulative N
2
O emissions increased exponentially with NO
3
−
availability, while cumulative N
2
emissions followed an exponential increase to maximum. Average daily N
2
emissions exceeded 5 µg N
2
–N g soil
−1
and accounted for > 99% of denitrification. The response of N
2
O suggests preferential NO
3
−
reduction with increasing NO
3
−
availability, increasing N
2
O even when NO
3
−
levels had only a diminishing effect on the overall denitrification rate. The fraction of N
2
O emitted from denitrification increased with NO
3
−
availability, and was a function of soil water, NO
3
−
and heterotrophic soil respiration.
Conclusions
Our findings show the exponential increase of N
2
O driven by excess NO
3
−
, even though the complete reduction to N
2
dominated denitrification. The low N
2
O/(N
2
O + N
2
) product ratio questions the use of N
2
O as proxy for overall denitrification rates, highlighting the need for in-situ N
2
measurements to account for denitrification losses from sugarcane systems.</description><subject>Availability</subject><subject>Denitrification</subject><subject>Earth and Environmental Science</subject><subject>Emission measurements</subject><subject>Emissions</subject><subject>Environment</subject><subject>Environmental Physics</subject><subject>Fertilization</subject><subject>Flood irrigation</subject><subject>Greenhouse gases</subject><subject>Moisture content</subject><subject>Nitrates</subject><subject>Nitrification</subject><subject>Nitrous oxide</subject><subject>Nonlinear response</subject><subject>Reduction</subject><subject>Saturation</subject><subject>Sec 1 • Soil Organic Matter Dynamics and Nutrient Cycling • Short Original Communication</subject><subject>Soil</subject><subject>Soil Science & Conservation</subject><subject>Soil water</subject><subject>Soils</subject><subject>Stoichiometry</subject><subject>Sugarcane</subject><subject>Wetting</subject><issn>1439-0108</issn><issn>1614-7480</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kM1KAzEUhYMoWKsv4CrgOprkZpJ0KcU_KO1G1yEzkykp02RMpkLfxmfxyYyt4M7VPXC-cy4chK4ZvWWUqrvMGEhNKAdCQWhO-AmaMMkEUULT06IFzAhlVJ-ji5w3lIIq9gQNyxh6H5xNOLk8xJAdjh1e8tXXpw1tEdhtfc6-OHiM2IcmOZt9WOMcfY-DH5MdHbYf1ve29r0f9wXCFo8pDr6xPc67tU2NDe6QuERnne2zu_q9U_T2-PA6fyaL1dPL_H5BGpAwElvRqhMUZF2zWlUgqhaYEpLBTHStAGgBgEvNRSd0K3TdSCU445Rp2iolYIpujr1Diu87l0ezibsUykvDNeVSApuxQvEj1aSYc3KdGZLf2rQ3jJqfZc1xWVOWNYdlDS8hOIZygcPapb_qf1Lf5F97Tw</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Kirkby, Robert</creator><creator>Friedl, Johannes</creator><creator>Takeda, Naoya</creator><creator>De Rosa, Daniele</creator><creator>Rowlings, David W.</creator><creator>Grace, Peter R.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7UA</scope><scope>7X2</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>H97</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>M0K</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-1618-9309</orcidid><orcidid>https://orcid.org/0000-0003-4194-8407</orcidid><orcidid>https://orcid.org/0000-0002-0441-7722</orcidid><orcidid>https://orcid.org/0000-0003-4136-4129</orcidid><orcidid>https://orcid.org/0000-0003-0468-916X</orcidid><orcidid>https://orcid.org/0000-0002-3977-2804</orcidid></search><sort><creationdate>20230501</creationdate><title>Nonlinear response of N2O and N2 emissions to increasing soil nitrate availability in a tropical sugarcane soil</title><author>Kirkby, Robert ; Friedl, Johannes ; Takeda, Naoya ; De Rosa, Daniele ; Rowlings, David W. ; Grace, Peter R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-a505f4036bb1b75345d317461394fd433d33326824f48d48bc6742120180d7743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Availability</topic><topic>Denitrification</topic><topic>Earth and Environmental Science</topic><topic>Emission measurements</topic><topic>Emissions</topic><topic>Environment</topic><topic>Environmental Physics</topic><topic>Fertilization</topic><topic>Flood irrigation</topic><topic>Greenhouse gases</topic><topic>Moisture content</topic><topic>Nitrates</topic><topic>Nitrification</topic><topic>Nitrous oxide</topic><topic>Nonlinear response</topic><topic>Reduction</topic><topic>Saturation</topic><topic>Sec 1 • Soil Organic Matter Dynamics and Nutrient Cycling • Short Original Communication</topic><topic>Soil</topic><topic>Soil Science & Conservation</topic><topic>Soil water</topic><topic>Soils</topic><topic>Stoichiometry</topic><topic>Sugarcane</topic><topic>Wetting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kirkby, Robert</creatorcontrib><creatorcontrib>Friedl, Johannes</creatorcontrib><creatorcontrib>Takeda, Naoya</creatorcontrib><creatorcontrib>De Rosa, Daniele</creatorcontrib><creatorcontrib>Rowlings, David W.</creatorcontrib><creatorcontrib>Grace, Peter R.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Agricultural Science Database</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Journal of soils and sediments</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kirkby, Robert</au><au>Friedl, Johannes</au><au>Takeda, Naoya</au><au>De Rosa, Daniele</au><au>Rowlings, David W.</au><au>Grace, Peter R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear response of N2O and N2 emissions to increasing soil nitrate availability in a tropical sugarcane soil</atitle><jtitle>Journal of soils and sediments</jtitle><stitle>J Soils Sediments</stitle><date>2023-05-01</date><risdate>2023</risdate><volume>23</volume><issue>5</issue><spage>2065</spage><epage>2071</epage><pages>2065-2071</pages><issn>1439-0108</issn><eissn>1614-7480</eissn><abstract>Purpose
The reduction of the greenhouse gas nitrous oxide (N
2
O) to dinitrogen (N
2
) via denitrification and N
2
O source partitioning between nitrification and denitrification remain major uncertainties in sugarcane systems. We therefore investigated magnitude and product stoichiometry of denitrification and production pathways of N
2
O from a tropical sugarcane soil in response to increasing soil nitrate (NO
3
−
) availability.
Methods
Microcosms were established using a tropical sugarcane soil (Qld, Australia) and emissions of N
2
O and N
2
were measured following fertilisation with
15
NO
3
−
–N equivalent to 25, 50 and 100 μg N g
−1
soil, simulating soil NO
3
−
contents previously observed in situ, and mimicking flood irrigation by wetting the soil close to saturation.
Results
Cumulative N
2
O emissions increased exponentially with NO
3
−
availability, while cumulative N
2
emissions followed an exponential increase to maximum. Average daily N
2
emissions exceeded 5 µg N
2
–N g soil
−1
and accounted for > 99% of denitrification. The response of N
2
O suggests preferential NO
3
−
reduction with increasing NO
3
−
availability, increasing N
2
O even when NO
3
−
levels had only a diminishing effect on the overall denitrification rate. The fraction of N
2
O emitted from denitrification increased with NO
3
−
availability, and was a function of soil water, NO
3
−
and heterotrophic soil respiration.
Conclusions
Our findings show the exponential increase of N
2
O driven by excess NO
3
−
, even though the complete reduction to N
2
dominated denitrification. The low N
2
O/(N
2
O + N
2
) product ratio questions the use of N
2
O as proxy for overall denitrification rates, highlighting the need for in-situ N
2
measurements to account for denitrification losses from sugarcane systems.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11368-023-03482-2</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-1618-9309</orcidid><orcidid>https://orcid.org/0000-0003-4194-8407</orcidid><orcidid>https://orcid.org/0000-0002-0441-7722</orcidid><orcidid>https://orcid.org/0000-0003-4136-4129</orcidid><orcidid>https://orcid.org/0000-0003-0468-916X</orcidid><orcidid>https://orcid.org/0000-0002-3977-2804</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1439-0108 |
ispartof | Journal of soils and sediments, 2023-05, Vol.23 (5), p.2065-2071 |
issn | 1439-0108 1614-7480 |
language | eng |
recordid | cdi_proquest_journals_2802663191 |
source | SpringerNature Journals |
subjects | Availability Denitrification Earth and Environmental Science Emission measurements Emissions Environment Environmental Physics Fertilization Flood irrigation Greenhouse gases Moisture content Nitrates Nitrification Nitrous oxide Nonlinear response Reduction Saturation Sec 1 • Soil Organic Matter Dynamics and Nutrient Cycling • Short Original Communication Soil Soil Science & Conservation Soil water Soils Stoichiometry Sugarcane Wetting |
title | Nonlinear response of N2O and N2 emissions to increasing soil nitrate availability in a tropical sugarcane soil |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T12%3A14%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20response%20of%20N2O%C2%A0and%20N2%20emissions%20to%20increasing%20soil%20nitrate%20availability%20in%20a%20tropical%20sugarcane%20soil&rft.jtitle=Journal%20of%20soils%20and%20sediments&rft.au=Kirkby,%20Robert&rft.date=2023-05-01&rft.volume=23&rft.issue=5&rft.spage=2065&rft.epage=2071&rft.pages=2065-2071&rft.issn=1439-0108&rft.eissn=1614-7480&rft_id=info:doi/10.1007/s11368-023-03482-2&rft_dat=%3Cproquest_cross%3E2802663191%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2802663191&rft_id=info:pmid/&rfr_iscdi=true |