Spacecraft anomaly detection with attention temporal convolution networks
Spacecraft faces various situations when carrying out exploration missions in complex space, thus monitoring the anomaly status of spacecraft is crucial to the development of the aerospace industry. The time-series telemetry data generated by on-orbit spacecraft contains important information about...
Gespeichert in:
Veröffentlicht in: | Neural computing & applications 2023-05, Vol.35 (13), p.9753-9761 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9761 |
---|---|
container_issue | 13 |
container_start_page | 9753 |
container_title | Neural computing & applications |
container_volume | 35 |
creator | Liu, Liang Tian, Ling Kang, Zhao Wan, Tianqi |
description | Spacecraft faces various situations when carrying out exploration missions in complex space, thus monitoring the anomaly status of spacecraft is crucial to the development of the aerospace industry. The time-series telemetry data generated by on-orbit spacecraft contains important information about the status of spacecraft. However, traditional domain knowledge-based spacecraft anomaly detection methods are not effective due to high dimensionality and complex correlation among variables. In this work, we propose an anomaly detection framework for spacecraft multivariate time-series data based on temporal convolution networks (TCNs). First, we employ dynamic graph attention to model the complex correlation among variables and time series. Second, temporal convolution networks with parallel processing ability are used to extract multidimensional features for the downstream prediction task. Finally, many potential anomalies are detected by the best threshold. Experiments on real NASA SMAP/MSL spacecraft datasets show the superiority of our proposed model with respect to state-of-the-art methods. |
doi_str_mv | 10.1007/s00521-023-08213-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2802646707</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2802646707</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-17745b2c97c8833c6fe25794ecd584ff6619b641a9b941c580e85dbe464b8eed3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwA6wisQ6Mn7GXqOJRqRILYG05zgRa0rjYLlX_ntAgsWM1mpl774wOIZcUrilAdZMAJKMlMF6CZpSX5ohMqOC85CD1MZmAEcNaCX5KzlJaAYBQWk7I_HnjPPro2ly4Pqxdty8azOjzMvTFbpnfC5cz9oc243oTousKH_qv0G0Pwx7zLsSPdE5OWtclvPitU_J6f_cyeywXTw_z2e2i9JyaXNKqErJm3lRea869apHJygj0jdSibZWiplaCOlMPL3upAbVsahRK1Bqx4VNyNeZuYvjcYsp2FbaxH05apoEpoSqoBhUbVT6GlCK2dhOXaxf3loL9QWZHZHZAZg_IrBlMfDSlQdy_YfyL_sf1DahZb4I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2802646707</pqid></control><display><type>article</type><title>Spacecraft anomaly detection with attention temporal convolution networks</title><source>SpringerNature Journals</source><creator>Liu, Liang ; Tian, Ling ; Kang, Zhao ; Wan, Tianqi</creator><creatorcontrib>Liu, Liang ; Tian, Ling ; Kang, Zhao ; Wan, Tianqi</creatorcontrib><description>Spacecraft faces various situations when carrying out exploration missions in complex space, thus monitoring the anomaly status of spacecraft is crucial to the development of the aerospace industry. The time-series telemetry data generated by on-orbit spacecraft contains important information about the status of spacecraft. However, traditional domain knowledge-based spacecraft anomaly detection methods are not effective due to high dimensionality and complex correlation among variables. In this work, we propose an anomaly detection framework for spacecraft multivariate time-series data based on temporal convolution networks (TCNs). First, we employ dynamic graph attention to model the complex correlation among variables and time series. Second, temporal convolution networks with parallel processing ability are used to extract multidimensional features for the downstream prediction task. Finally, many potential anomalies are detected by the best threshold. Experiments on real NASA SMAP/MSL spacecraft datasets show the superiority of our proposed model with respect to state-of-the-art methods.</description><identifier>ISSN: 0941-0643</identifier><identifier>EISSN: 1433-3058</identifier><identifier>DOI: 10.1007/s00521-023-08213-9</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Aerospace industry ; Anomalies ; Artificial Intelligence ; Complex variables ; Computational Biology/Bioinformatics ; Computational Science and Engineering ; Computer Science ; Convolution ; Data Mining and Knowledge Discovery ; Datasets ; Deep learning ; Image Processing and Computer Vision ; Laboratories ; Methods ; Multivariate analysis ; Networks ; Neural networks ; Original Article ; Parallel processing ; Probability and Statistics in Computer Science ; Satellites ; Spacecraft ; Spacecraft components ; Telemetry ; Time series ; Variables</subject><ispartof>Neural computing & applications, 2023-05, Vol.35 (13), p.9753-9761</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-17745b2c97c8833c6fe25794ecd584ff6619b641a9b941c580e85dbe464b8eed3</citedby><cites>FETCH-LOGICAL-c319t-17745b2c97c8833c6fe25794ecd584ff6619b641a9b941c580e85dbe464b8eed3</cites><orcidid>0000-0003-4103-0954</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00521-023-08213-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00521-023-08213-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Liu, Liang</creatorcontrib><creatorcontrib>Tian, Ling</creatorcontrib><creatorcontrib>Kang, Zhao</creatorcontrib><creatorcontrib>Wan, Tianqi</creatorcontrib><title>Spacecraft anomaly detection with attention temporal convolution networks</title><title>Neural computing & applications</title><addtitle>Neural Comput & Applic</addtitle><description>Spacecraft faces various situations when carrying out exploration missions in complex space, thus monitoring the anomaly status of spacecraft is crucial to the development of the aerospace industry. The time-series telemetry data generated by on-orbit spacecraft contains important information about the status of spacecraft. However, traditional domain knowledge-based spacecraft anomaly detection methods are not effective due to high dimensionality and complex correlation among variables. In this work, we propose an anomaly detection framework for spacecraft multivariate time-series data based on temporal convolution networks (TCNs). First, we employ dynamic graph attention to model the complex correlation among variables and time series. Second, temporal convolution networks with parallel processing ability are used to extract multidimensional features for the downstream prediction task. Finally, many potential anomalies are detected by the best threshold. Experiments on real NASA SMAP/MSL spacecraft datasets show the superiority of our proposed model with respect to state-of-the-art methods.</description><subject>Aerospace industry</subject><subject>Anomalies</subject><subject>Artificial Intelligence</subject><subject>Complex variables</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computational Science and Engineering</subject><subject>Computer Science</subject><subject>Convolution</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Image Processing and Computer Vision</subject><subject>Laboratories</subject><subject>Methods</subject><subject>Multivariate analysis</subject><subject>Networks</subject><subject>Neural networks</subject><subject>Original Article</subject><subject>Parallel processing</subject><subject>Probability and Statistics in Computer Science</subject><subject>Satellites</subject><subject>Spacecraft</subject><subject>Spacecraft components</subject><subject>Telemetry</subject><subject>Time series</subject><subject>Variables</subject><issn>0941-0643</issn><issn>1433-3058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kMtOwzAQRS0EEqXwA6wisQ6Mn7GXqOJRqRILYG05zgRa0rjYLlX_ntAgsWM1mpl774wOIZcUrilAdZMAJKMlMF6CZpSX5ohMqOC85CD1MZmAEcNaCX5KzlJaAYBQWk7I_HnjPPro2ly4Pqxdty8azOjzMvTFbpnfC5cz9oc243oTousKH_qv0G0Pwx7zLsSPdE5OWtclvPitU_J6f_cyeywXTw_z2e2i9JyaXNKqErJm3lRea869apHJygj0jdSibZWiplaCOlMPL3upAbVsahRK1Bqx4VNyNeZuYvjcYsp2FbaxH05apoEpoSqoBhUbVT6GlCK2dhOXaxf3loL9QWZHZHZAZg_IrBlMfDSlQdy_YfyL_sf1DahZb4I</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Liu, Liang</creator><creator>Tian, Ling</creator><creator>Kang, Zhao</creator><creator>Wan, Tianqi</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0003-4103-0954</orcidid></search><sort><creationdate>20230501</creationdate><title>Spacecraft anomaly detection with attention temporal convolution networks</title><author>Liu, Liang ; Tian, Ling ; Kang, Zhao ; Wan, Tianqi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-17745b2c97c8833c6fe25794ecd584ff6619b641a9b941c580e85dbe464b8eed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aerospace industry</topic><topic>Anomalies</topic><topic>Artificial Intelligence</topic><topic>Complex variables</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computational Science and Engineering</topic><topic>Computer Science</topic><topic>Convolution</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Image Processing and Computer Vision</topic><topic>Laboratories</topic><topic>Methods</topic><topic>Multivariate analysis</topic><topic>Networks</topic><topic>Neural networks</topic><topic>Original Article</topic><topic>Parallel processing</topic><topic>Probability and Statistics in Computer Science</topic><topic>Satellites</topic><topic>Spacecraft</topic><topic>Spacecraft components</topic><topic>Telemetry</topic><topic>Time series</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Liang</creatorcontrib><creatorcontrib>Tian, Ling</creatorcontrib><creatorcontrib>Kang, Zhao</creatorcontrib><creatorcontrib>Wan, Tianqi</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Neural computing & applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Liang</au><au>Tian, Ling</au><au>Kang, Zhao</au><au>Wan, Tianqi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spacecraft anomaly detection with attention temporal convolution networks</atitle><jtitle>Neural computing & applications</jtitle><stitle>Neural Comput & Applic</stitle><date>2023-05-01</date><risdate>2023</risdate><volume>35</volume><issue>13</issue><spage>9753</spage><epage>9761</epage><pages>9753-9761</pages><issn>0941-0643</issn><eissn>1433-3058</eissn><abstract>Spacecraft faces various situations when carrying out exploration missions in complex space, thus monitoring the anomaly status of spacecraft is crucial to the development of the aerospace industry. The time-series telemetry data generated by on-orbit spacecraft contains important information about the status of spacecraft. However, traditional domain knowledge-based spacecraft anomaly detection methods are not effective due to high dimensionality and complex correlation among variables. In this work, we propose an anomaly detection framework for spacecraft multivariate time-series data based on temporal convolution networks (TCNs). First, we employ dynamic graph attention to model the complex correlation among variables and time series. Second, temporal convolution networks with parallel processing ability are used to extract multidimensional features for the downstream prediction task. Finally, many potential anomalies are detected by the best threshold. Experiments on real NASA SMAP/MSL spacecraft datasets show the superiority of our proposed model with respect to state-of-the-art methods.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00521-023-08213-9</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-4103-0954</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0941-0643 |
ispartof | Neural computing & applications, 2023-05, Vol.35 (13), p.9753-9761 |
issn | 0941-0643 1433-3058 |
language | eng |
recordid | cdi_proquest_journals_2802646707 |
source | SpringerNature Journals |
subjects | Aerospace industry Anomalies Artificial Intelligence Complex variables Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Convolution Data Mining and Knowledge Discovery Datasets Deep learning Image Processing and Computer Vision Laboratories Methods Multivariate analysis Networks Neural networks Original Article Parallel processing Probability and Statistics in Computer Science Satellites Spacecraft Spacecraft components Telemetry Time series Variables |
title | Spacecraft anomaly detection with attention temporal convolution networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T19%3A20%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spacecraft%20anomaly%20detection%20with%20attention%20temporal%20convolution%20networks&rft.jtitle=Neural%20computing%20&%20applications&rft.au=Liu,%20Liang&rft.date=2023-05-01&rft.volume=35&rft.issue=13&rft.spage=9753&rft.epage=9761&rft.pages=9753-9761&rft.issn=0941-0643&rft.eissn=1433-3058&rft_id=info:doi/10.1007/s00521-023-08213-9&rft_dat=%3Cproquest_cross%3E2802646707%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2802646707&rft_id=info:pmid/&rfr_iscdi=true |