A point field driven approach to process metrics based on laser powder bed fusion additive manufacturing models and in situ process monitoring

The widespread adoption of additive manufacturing (AM) in different industries has accelerated the need for quality control of these AM parts. Some of the complex and labor-intensive challenges associated with qualification and certification of AM parts are addressed by modeling and monitoring proce...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials research 2023-04, Vol.38 (7), p.1866-1881
Hauptverfasser: Hocker, Samuel J. A., Richter, Brodan, Spaeth, Peter W., Kitahara, Andrew R., Zalameda, Joseph N., Glaessgen, Edward H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1881
container_issue 7
container_start_page 1866
container_title Journal of materials research
container_volume 38
creator Hocker, Samuel J. A.
Richter, Brodan
Spaeth, Peter W.
Kitahara, Andrew R.
Zalameda, Joseph N.
Glaessgen, Edward H.
description The widespread adoption of additive manufacturing (AM) in different industries has accelerated the need for quality control of these AM parts. Some of the complex and labor-intensive challenges associated with qualification and certification of AM parts are addressed by modeling and monitoring process conditions. Quantifying melt-track process conditions remains a significant computational challenge due to the large-scale differential between melt pool and part volumes. This work explores a novel point field (PF) driven AM model-based process metric (AM-PM) approach for calculating melt track resolved process conditions with maximal computational speed. A cylindrical Ti-6Al-4V test article with 16 equiangular zones having varied process parameters was built. The melt-track resolved AM-PMs were calculated and mapped to porosity existence for the 5.8-million-point PF of the test article. AM-PMs were calculated in 6.5 min, ~ 665 × faster than a similarly sized finite element calculation. This approach enables efficient prediction, assessment, and adjustment of AM builds. Graphical abstract
doi_str_mv 10.1557/s43578-023-00953-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2802488578</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2802488578</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-96f4065c398bd167c4c665e410181043432984d1df0567687f5e0834325a4bc43</originalsourceid><addsrcrecordid>eNp9kM1OxCAUhYnRxHH0BVyRuK5C-SldTib-JZO40TWhQJVJCxWoxpfwmWUck9m5ujcn5xwuHwCXGF1jxpqbRAlrRIVqUiHUMlI1R2BRI0orRmp-DBZICFrVLaan4CylLUKYoYYuwPcKTsH5DHtnBwNNdB_WQzVNMSj9BnOAZdM2JTjaHJ1OsFPJGhg8HMoSS_rTlNEVrZ-TK7oyxuVSA0fl517pPEfnX-EYjB0SVN5A52FyeT5UB-9y2LnOwUmvhmQv_uYSvNzdPq8fqs3T_eN6tak04SRXLe8p4kyTVnQG80ZTzTmzFCMsMKKEkroV1GDTI8YbLpqeWSR2MlO005QswdW-t5zwPtuU5TbM0ZcnZS1QTYUoOIur3rt0DClF28spulHFL4mR3HGXe-6ycJe_3GVTQmQfStPuRzYeqv9J_QAXD4ck</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2802488578</pqid></control><display><type>article</type><title>A point field driven approach to process metrics based on laser powder bed fusion additive manufacturing models and in situ process monitoring</title><source>SpringerNature Journals</source><creator>Hocker, Samuel J. A. ; Richter, Brodan ; Spaeth, Peter W. ; Kitahara, Andrew R. ; Zalameda, Joseph N. ; Glaessgen, Edward H.</creator><creatorcontrib>Hocker, Samuel J. A. ; Richter, Brodan ; Spaeth, Peter W. ; Kitahara, Andrew R. ; Zalameda, Joseph N. ; Glaessgen, Edward H.</creatorcontrib><description>The widespread adoption of additive manufacturing (AM) in different industries has accelerated the need for quality control of these AM parts. Some of the complex and labor-intensive challenges associated with qualification and certification of AM parts are addressed by modeling and monitoring process conditions. Quantifying melt-track process conditions remains a significant computational challenge due to the large-scale differential between melt pool and part volumes. This work explores a novel point field (PF) driven AM model-based process metric (AM-PM) approach for calculating melt track resolved process conditions with maximal computational speed. A cylindrical Ti-6Al-4V test article with 16 equiangular zones having varied process parameters was built. The melt-track resolved AM-PMs were calculated and mapped to porosity existence for the 5.8-million-point PF of the test article. AM-PMs were calculated in 6.5 min, ~ 665 × faster than a similarly sized finite element calculation. This approach enables efficient prediction, assessment, and adjustment of AM builds. Graphical abstract</description><identifier>ISSN: 0884-2914</identifier><identifier>EISSN: 2044-5326</identifier><identifier>DOI: 10.1557/s43578-023-00953-7</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Applied and Technical Physics ; Biomaterials ; Chemistry and Materials Science ; Inorganic Chemistry ; Invited Paper ; Manufacturing ; Materials Engineering ; Materials research ; Materials Science ; Melt pools ; Melting ; Monitoring ; Nanotechnology ; Powder beds ; Process parameters ; Quality control ; Titanium base alloys</subject><ispartof>Journal of materials research, 2023-04, Vol.38 (7), p.1866-1881</ispartof><rights>This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2023</rights><rights>This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-96f4065c398bd167c4c665e410181043432984d1df0567687f5e0834325a4bc43</citedby><cites>FETCH-LOGICAL-c363t-96f4065c398bd167c4c665e410181043432984d1df0567687f5e0834325a4bc43</cites><orcidid>0000-0002-8733-0787</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1557/s43578-023-00953-7$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1557/s43578-023-00953-7$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Hocker, Samuel J. A.</creatorcontrib><creatorcontrib>Richter, Brodan</creatorcontrib><creatorcontrib>Spaeth, Peter W.</creatorcontrib><creatorcontrib>Kitahara, Andrew R.</creatorcontrib><creatorcontrib>Zalameda, Joseph N.</creatorcontrib><creatorcontrib>Glaessgen, Edward H.</creatorcontrib><title>A point field driven approach to process metrics based on laser powder bed fusion additive manufacturing models and in situ process monitoring</title><title>Journal of materials research</title><addtitle>Journal of Materials Research</addtitle><description>The widespread adoption of additive manufacturing (AM) in different industries has accelerated the need for quality control of these AM parts. Some of the complex and labor-intensive challenges associated with qualification and certification of AM parts are addressed by modeling and monitoring process conditions. Quantifying melt-track process conditions remains a significant computational challenge due to the large-scale differential between melt pool and part volumes. This work explores a novel point field (PF) driven AM model-based process metric (AM-PM) approach for calculating melt track resolved process conditions with maximal computational speed. A cylindrical Ti-6Al-4V test article with 16 equiangular zones having varied process parameters was built. The melt-track resolved AM-PMs were calculated and mapped to porosity existence for the 5.8-million-point PF of the test article. AM-PMs were calculated in 6.5 min, ~ 665 × faster than a similarly sized finite element calculation. This approach enables efficient prediction, assessment, and adjustment of AM builds. Graphical abstract</description><subject>Applied and Technical Physics</subject><subject>Biomaterials</subject><subject>Chemistry and Materials Science</subject><subject>Inorganic Chemistry</subject><subject>Invited Paper</subject><subject>Manufacturing</subject><subject>Materials Engineering</subject><subject>Materials research</subject><subject>Materials Science</subject><subject>Melt pools</subject><subject>Melting</subject><subject>Monitoring</subject><subject>Nanotechnology</subject><subject>Powder beds</subject><subject>Process parameters</subject><subject>Quality control</subject><subject>Titanium base alloys</subject><issn>0884-2914</issn><issn>2044-5326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kM1OxCAUhYnRxHH0BVyRuK5C-SldTib-JZO40TWhQJVJCxWoxpfwmWUck9m5ujcn5xwuHwCXGF1jxpqbRAlrRIVqUiHUMlI1R2BRI0orRmp-DBZICFrVLaan4CylLUKYoYYuwPcKTsH5DHtnBwNNdB_WQzVNMSj9BnOAZdM2JTjaHJ1OsFPJGhg8HMoSS_rTlNEVrZ-TK7oyxuVSA0fl517pPEfnX-EYjB0SVN5A52FyeT5UB-9y2LnOwUmvhmQv_uYSvNzdPq8fqs3T_eN6tak04SRXLe8p4kyTVnQG80ZTzTmzFCMsMKKEkroV1GDTI8YbLpqeWSR2MlO005QswdW-t5zwPtuU5TbM0ZcnZS1QTYUoOIur3rt0DClF28spulHFL4mR3HGXe-6ycJe_3GVTQmQfStPuRzYeqv9J_QAXD4ck</recordid><startdate>20230414</startdate><enddate>20230414</enddate><creator>Hocker, Samuel J. A.</creator><creator>Richter, Brodan</creator><creator>Spaeth, Peter W.</creator><creator>Kitahara, Andrew R.</creator><creator>Zalameda, Joseph N.</creator><creator>Glaessgen, Edward H.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-8733-0787</orcidid></search><sort><creationdate>20230414</creationdate><title>A point field driven approach to process metrics based on laser powder bed fusion additive manufacturing models and in situ process monitoring</title><author>Hocker, Samuel J. A. ; Richter, Brodan ; Spaeth, Peter W. ; Kitahara, Andrew R. ; Zalameda, Joseph N. ; Glaessgen, Edward H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-96f4065c398bd167c4c665e410181043432984d1df0567687f5e0834325a4bc43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Applied and Technical Physics</topic><topic>Biomaterials</topic><topic>Chemistry and Materials Science</topic><topic>Inorganic Chemistry</topic><topic>Invited Paper</topic><topic>Manufacturing</topic><topic>Materials Engineering</topic><topic>Materials research</topic><topic>Materials Science</topic><topic>Melt pools</topic><topic>Melting</topic><topic>Monitoring</topic><topic>Nanotechnology</topic><topic>Powder beds</topic><topic>Process parameters</topic><topic>Quality control</topic><topic>Titanium base alloys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hocker, Samuel J. A.</creatorcontrib><creatorcontrib>Richter, Brodan</creatorcontrib><creatorcontrib>Spaeth, Peter W.</creatorcontrib><creatorcontrib>Kitahara, Andrew R.</creatorcontrib><creatorcontrib>Zalameda, Joseph N.</creatorcontrib><creatorcontrib>Glaessgen, Edward H.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of materials research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hocker, Samuel J. A.</au><au>Richter, Brodan</au><au>Spaeth, Peter W.</au><au>Kitahara, Andrew R.</au><au>Zalameda, Joseph N.</au><au>Glaessgen, Edward H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A point field driven approach to process metrics based on laser powder bed fusion additive manufacturing models and in situ process monitoring</atitle><jtitle>Journal of materials research</jtitle><stitle>Journal of Materials Research</stitle><date>2023-04-14</date><risdate>2023</risdate><volume>38</volume><issue>7</issue><spage>1866</spage><epage>1881</epage><pages>1866-1881</pages><issn>0884-2914</issn><eissn>2044-5326</eissn><abstract>The widespread adoption of additive manufacturing (AM) in different industries has accelerated the need for quality control of these AM parts. Some of the complex and labor-intensive challenges associated with qualification and certification of AM parts are addressed by modeling and monitoring process conditions. Quantifying melt-track process conditions remains a significant computational challenge due to the large-scale differential between melt pool and part volumes. This work explores a novel point field (PF) driven AM model-based process metric (AM-PM) approach for calculating melt track resolved process conditions with maximal computational speed. A cylindrical Ti-6Al-4V test article with 16 equiangular zones having varied process parameters was built. The melt-track resolved AM-PMs were calculated and mapped to porosity existence for the 5.8-million-point PF of the test article. AM-PMs were calculated in 6.5 min, ~ 665 × faster than a similarly sized finite element calculation. This approach enables efficient prediction, assessment, and adjustment of AM builds. Graphical abstract</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1557/s43578-023-00953-7</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-8733-0787</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0884-2914
ispartof Journal of materials research, 2023-04, Vol.38 (7), p.1866-1881
issn 0884-2914
2044-5326
language eng
recordid cdi_proquest_journals_2802488578
source SpringerNature Journals
subjects Applied and Technical Physics
Biomaterials
Chemistry and Materials Science
Inorganic Chemistry
Invited Paper
Manufacturing
Materials Engineering
Materials research
Materials Science
Melt pools
Melting
Monitoring
Nanotechnology
Powder beds
Process parameters
Quality control
Titanium base alloys
title A point field driven approach to process metrics based on laser powder bed fusion additive manufacturing models and in situ process monitoring
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T00%3A18%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20point%20field%20driven%20approach%20to%20process%20metrics%20based%20on%20laser%20powder%20bed%20fusion%20additive%20manufacturing%20models%20and%20in%20situ%20process%20monitoring&rft.jtitle=Journal%20of%20materials%20research&rft.au=Hocker,%20Samuel%20J.%20A.&rft.date=2023-04-14&rft.volume=38&rft.issue=7&rft.spage=1866&rft.epage=1881&rft.pages=1866-1881&rft.issn=0884-2914&rft.eissn=2044-5326&rft_id=info:doi/10.1557/s43578-023-00953-7&rft_dat=%3Cproquest_cross%3E2802488578%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2802488578&rft_id=info:pmid/&rfr_iscdi=true