A point field driven approach to process metrics based on laser powder bed fusion additive manufacturing models and in situ process monitoring
The widespread adoption of additive manufacturing (AM) in different industries has accelerated the need for quality control of these AM parts. Some of the complex and labor-intensive challenges associated with qualification and certification of AM parts are addressed by modeling and monitoring proce...
Gespeichert in:
Veröffentlicht in: | Journal of materials research 2023-04, Vol.38 (7), p.1866-1881 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1881 |
---|---|
container_issue | 7 |
container_start_page | 1866 |
container_title | Journal of materials research |
container_volume | 38 |
creator | Hocker, Samuel J. A. Richter, Brodan Spaeth, Peter W. Kitahara, Andrew R. Zalameda, Joseph N. Glaessgen, Edward H. |
description | The widespread adoption of additive manufacturing (AM) in different industries has accelerated the need for quality control of these AM parts. Some of the complex and labor-intensive challenges associated with qualification and certification of AM parts are addressed by modeling and monitoring process conditions. Quantifying melt-track process conditions remains a significant computational challenge due to the large-scale differential between melt pool and part volumes. This work explores a novel point field (PF) driven AM model-based process metric (AM-PM) approach for calculating melt track resolved process conditions with maximal computational speed. A cylindrical Ti-6Al-4V test article with 16 equiangular zones having varied process parameters was built. The melt-track resolved AM-PMs were calculated and mapped to porosity existence for the 5.8-million-point PF of the test article. AM-PMs were calculated in 6.5 min, ~ 665 × faster than a similarly sized finite element calculation. This approach enables efficient prediction, assessment, and adjustment of AM builds.
Graphical abstract |
doi_str_mv | 10.1557/s43578-023-00953-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2802488578</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2802488578</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-96f4065c398bd167c4c665e410181043432984d1df0567687f5e0834325a4bc43</originalsourceid><addsrcrecordid>eNp9kM1OxCAUhYnRxHH0BVyRuK5C-SldTib-JZO40TWhQJVJCxWoxpfwmWUck9m5ujcn5xwuHwCXGF1jxpqbRAlrRIVqUiHUMlI1R2BRI0orRmp-DBZICFrVLaan4CylLUKYoYYuwPcKTsH5DHtnBwNNdB_WQzVNMSj9BnOAZdM2JTjaHJ1OsFPJGhg8HMoSS_rTlNEVrZ-TK7oyxuVSA0fl517pPEfnX-EYjB0SVN5A52FyeT5UB-9y2LnOwUmvhmQv_uYSvNzdPq8fqs3T_eN6tak04SRXLe8p4kyTVnQG80ZTzTmzFCMsMKKEkroV1GDTI8YbLpqeWSR2MlO005QswdW-t5zwPtuU5TbM0ZcnZS1QTYUoOIur3rt0DClF28spulHFL4mR3HGXe-6ycJe_3GVTQmQfStPuRzYeqv9J_QAXD4ck</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2802488578</pqid></control><display><type>article</type><title>A point field driven approach to process metrics based on laser powder bed fusion additive manufacturing models and in situ process monitoring</title><source>SpringerNature Journals</source><creator>Hocker, Samuel J. A. ; Richter, Brodan ; Spaeth, Peter W. ; Kitahara, Andrew R. ; Zalameda, Joseph N. ; Glaessgen, Edward H.</creator><creatorcontrib>Hocker, Samuel J. A. ; Richter, Brodan ; Spaeth, Peter W. ; Kitahara, Andrew R. ; Zalameda, Joseph N. ; Glaessgen, Edward H.</creatorcontrib><description>The widespread adoption of additive manufacturing (AM) in different industries has accelerated the need for quality control of these AM parts. Some of the complex and labor-intensive challenges associated with qualification and certification of AM parts are addressed by modeling and monitoring process conditions. Quantifying melt-track process conditions remains a significant computational challenge due to the large-scale differential between melt pool and part volumes. This work explores a novel point field (PF) driven AM model-based process metric (AM-PM) approach for calculating melt track resolved process conditions with maximal computational speed. A cylindrical Ti-6Al-4V test article with 16 equiangular zones having varied process parameters was built. The melt-track resolved AM-PMs were calculated and mapped to porosity existence for the 5.8-million-point PF of the test article. AM-PMs were calculated in 6.5 min, ~ 665 × faster than a similarly sized finite element calculation. This approach enables efficient prediction, assessment, and adjustment of AM builds.
Graphical abstract</description><identifier>ISSN: 0884-2914</identifier><identifier>EISSN: 2044-5326</identifier><identifier>DOI: 10.1557/s43578-023-00953-7</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Applied and Technical Physics ; Biomaterials ; Chemistry and Materials Science ; Inorganic Chemistry ; Invited Paper ; Manufacturing ; Materials Engineering ; Materials research ; Materials Science ; Melt pools ; Melting ; Monitoring ; Nanotechnology ; Powder beds ; Process parameters ; Quality control ; Titanium base alloys</subject><ispartof>Journal of materials research, 2023-04, Vol.38 (7), p.1866-1881</ispartof><rights>This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2023</rights><rights>This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-96f4065c398bd167c4c665e410181043432984d1df0567687f5e0834325a4bc43</citedby><cites>FETCH-LOGICAL-c363t-96f4065c398bd167c4c665e410181043432984d1df0567687f5e0834325a4bc43</cites><orcidid>0000-0002-8733-0787</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1557/s43578-023-00953-7$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1557/s43578-023-00953-7$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Hocker, Samuel J. A.</creatorcontrib><creatorcontrib>Richter, Brodan</creatorcontrib><creatorcontrib>Spaeth, Peter W.</creatorcontrib><creatorcontrib>Kitahara, Andrew R.</creatorcontrib><creatorcontrib>Zalameda, Joseph N.</creatorcontrib><creatorcontrib>Glaessgen, Edward H.</creatorcontrib><title>A point field driven approach to process metrics based on laser powder bed fusion additive manufacturing models and in situ process monitoring</title><title>Journal of materials research</title><addtitle>Journal of Materials Research</addtitle><description>The widespread adoption of additive manufacturing (AM) in different industries has accelerated the need for quality control of these AM parts. Some of the complex and labor-intensive challenges associated with qualification and certification of AM parts are addressed by modeling and monitoring process conditions. Quantifying melt-track process conditions remains a significant computational challenge due to the large-scale differential between melt pool and part volumes. This work explores a novel point field (PF) driven AM model-based process metric (AM-PM) approach for calculating melt track resolved process conditions with maximal computational speed. A cylindrical Ti-6Al-4V test article with 16 equiangular zones having varied process parameters was built. The melt-track resolved AM-PMs were calculated and mapped to porosity existence for the 5.8-million-point PF of the test article. AM-PMs were calculated in 6.5 min, ~ 665 × faster than a similarly sized finite element calculation. This approach enables efficient prediction, assessment, and adjustment of AM builds.
Graphical abstract</description><subject>Applied and Technical Physics</subject><subject>Biomaterials</subject><subject>Chemistry and Materials Science</subject><subject>Inorganic Chemistry</subject><subject>Invited Paper</subject><subject>Manufacturing</subject><subject>Materials Engineering</subject><subject>Materials research</subject><subject>Materials Science</subject><subject>Melt pools</subject><subject>Melting</subject><subject>Monitoring</subject><subject>Nanotechnology</subject><subject>Powder beds</subject><subject>Process parameters</subject><subject>Quality control</subject><subject>Titanium base alloys</subject><issn>0884-2914</issn><issn>2044-5326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kM1OxCAUhYnRxHH0BVyRuK5C-SldTib-JZO40TWhQJVJCxWoxpfwmWUck9m5ujcn5xwuHwCXGF1jxpqbRAlrRIVqUiHUMlI1R2BRI0orRmp-DBZICFrVLaan4CylLUKYoYYuwPcKTsH5DHtnBwNNdB_WQzVNMSj9BnOAZdM2JTjaHJ1OsFPJGhg8HMoSS_rTlNEVrZ-TK7oyxuVSA0fl517pPEfnX-EYjB0SVN5A52FyeT5UB-9y2LnOwUmvhmQv_uYSvNzdPq8fqs3T_eN6tak04SRXLe8p4kyTVnQG80ZTzTmzFCMsMKKEkroV1GDTI8YbLpqeWSR2MlO005QswdW-t5zwPtuU5TbM0ZcnZS1QTYUoOIur3rt0DClF28spulHFL4mR3HGXe-6ycJe_3GVTQmQfStPuRzYeqv9J_QAXD4ck</recordid><startdate>20230414</startdate><enddate>20230414</enddate><creator>Hocker, Samuel J. A.</creator><creator>Richter, Brodan</creator><creator>Spaeth, Peter W.</creator><creator>Kitahara, Andrew R.</creator><creator>Zalameda, Joseph N.</creator><creator>Glaessgen, Edward H.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-8733-0787</orcidid></search><sort><creationdate>20230414</creationdate><title>A point field driven approach to process metrics based on laser powder bed fusion additive manufacturing models and in situ process monitoring</title><author>Hocker, Samuel J. A. ; Richter, Brodan ; Spaeth, Peter W. ; Kitahara, Andrew R. ; Zalameda, Joseph N. ; Glaessgen, Edward H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-96f4065c398bd167c4c665e410181043432984d1df0567687f5e0834325a4bc43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Applied and Technical Physics</topic><topic>Biomaterials</topic><topic>Chemistry and Materials Science</topic><topic>Inorganic Chemistry</topic><topic>Invited Paper</topic><topic>Manufacturing</topic><topic>Materials Engineering</topic><topic>Materials research</topic><topic>Materials Science</topic><topic>Melt pools</topic><topic>Melting</topic><topic>Monitoring</topic><topic>Nanotechnology</topic><topic>Powder beds</topic><topic>Process parameters</topic><topic>Quality control</topic><topic>Titanium base alloys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hocker, Samuel J. A.</creatorcontrib><creatorcontrib>Richter, Brodan</creatorcontrib><creatorcontrib>Spaeth, Peter W.</creatorcontrib><creatorcontrib>Kitahara, Andrew R.</creatorcontrib><creatorcontrib>Zalameda, Joseph N.</creatorcontrib><creatorcontrib>Glaessgen, Edward H.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of materials research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hocker, Samuel J. A.</au><au>Richter, Brodan</au><au>Spaeth, Peter W.</au><au>Kitahara, Andrew R.</au><au>Zalameda, Joseph N.</au><au>Glaessgen, Edward H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A point field driven approach to process metrics based on laser powder bed fusion additive manufacturing models and in situ process monitoring</atitle><jtitle>Journal of materials research</jtitle><stitle>Journal of Materials Research</stitle><date>2023-04-14</date><risdate>2023</risdate><volume>38</volume><issue>7</issue><spage>1866</spage><epage>1881</epage><pages>1866-1881</pages><issn>0884-2914</issn><eissn>2044-5326</eissn><abstract>The widespread adoption of additive manufacturing (AM) in different industries has accelerated the need for quality control of these AM parts. Some of the complex and labor-intensive challenges associated with qualification and certification of AM parts are addressed by modeling and monitoring process conditions. Quantifying melt-track process conditions remains a significant computational challenge due to the large-scale differential between melt pool and part volumes. This work explores a novel point field (PF) driven AM model-based process metric (AM-PM) approach for calculating melt track resolved process conditions with maximal computational speed. A cylindrical Ti-6Al-4V test article with 16 equiangular zones having varied process parameters was built. The melt-track resolved AM-PMs were calculated and mapped to porosity existence for the 5.8-million-point PF of the test article. AM-PMs were calculated in 6.5 min, ~ 665 × faster than a similarly sized finite element calculation. This approach enables efficient prediction, assessment, and adjustment of AM builds.
Graphical abstract</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1557/s43578-023-00953-7</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-8733-0787</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0884-2914 |
ispartof | Journal of materials research, 2023-04, Vol.38 (7), p.1866-1881 |
issn | 0884-2914 2044-5326 |
language | eng |
recordid | cdi_proquest_journals_2802488578 |
source | SpringerNature Journals |
subjects | Applied and Technical Physics Biomaterials Chemistry and Materials Science Inorganic Chemistry Invited Paper Manufacturing Materials Engineering Materials research Materials Science Melt pools Melting Monitoring Nanotechnology Powder beds Process parameters Quality control Titanium base alloys |
title | A point field driven approach to process metrics based on laser powder bed fusion additive manufacturing models and in situ process monitoring |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T00%3A18%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20point%20field%20driven%20approach%20to%20process%20metrics%20based%20on%20laser%20powder%20bed%20fusion%20additive%20manufacturing%20models%20and%20in%20situ%20process%20monitoring&rft.jtitle=Journal%20of%20materials%20research&rft.au=Hocker,%20Samuel%20J.%20A.&rft.date=2023-04-14&rft.volume=38&rft.issue=7&rft.spage=1866&rft.epage=1881&rft.pages=1866-1881&rft.issn=0884-2914&rft.eissn=2044-5326&rft_id=info:doi/10.1557/s43578-023-00953-7&rft_dat=%3Cproquest_cross%3E2802488578%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2802488578&rft_id=info:pmid/&rfr_iscdi=true |