Data-Driven Approach for Modeling Coagulation Kinetics

Two approaches for the data-driven modeling of aggregation kinetics, described by Smoluchowski equations, are analyzed for binary and ternary coagulation. The first approach uses the dynamic mode decomposition (DMD) and the second one is based on the artificial neural networks (ANN). We obtain the n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational mathematics and modeling 2022-07, Vol.33 (3), p.310-318
Hauptverfasser: Lukashevich, D., Ovchinnikov, G. V., Tyukin, I. Yu, Matveev, S. A., Brilliantov, N. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 318
container_issue 3
container_start_page 310
container_title Computational mathematics and modeling
container_volume 33
creator Lukashevich, D.
Ovchinnikov, G. V.
Tyukin, I. Yu
Matveev, S. A.
Brilliantov, N. V.
description Two approaches for the data-driven modeling of aggregation kinetics, described by Smoluchowski equations, are analyzed for binary and ternary coagulation. The first approach uses the dynamic mode decomposition (DMD) and the second one is based on the artificial neural networks (ANN). We obtain the numerical solution of the Smoluchowski equations and compare it with the predictions yielding by DMD and ANN methods. To construct the forecast for the solution, the initial stage of the system evolution was used. We demonstrate that the DMD approach can accurately predict the size distribution of the aggregates up to the time, five times larger than the training time. In contrast, the straightforward application of the ANN approach fails to provide an accurate forecast. Hence we conclude that the DMD approach is an effective tool for modeling aggregation kinetics, even for complex aggregation events. At the same time the application of the ANN approach requires its further adaptation for the studied system, perhaps by implementation of physically-informed ANN and specially tailored loss functions.
doi_str_mv 10.1007/s10598-023-09574-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2802488540</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2802488540</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2345-3f14d620c7b3b10fe961bef5e284bd381ba0612edc2739d6e2e207fe54ea6023</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EEqXwBzhF4mxYv51j1fISRVx66M1yknVJVZJip0j8ewxB4sZp9zDf7M4QcsngmgGYm8RAlZYCFxRKZSRVR2TClBHUCrM-zjtITbkV61NyltIWACwXMCF64QdPF7H9wK6Y7fex9_VrEfpYPPcN7tpuU8x7vzns_ND2XfHUdji0dTonJ8HvEl78zilZ3d2u5g90-XL_OJ8tac2FVFQEJhvNoTaVqBgELDWrMCjkVlaNsKzyoBnHpuZGlI1GjhxMQCXR6xxmSq5G2_zX-wHT4Lb9IXb5ouMWuLRWScgqPqrq2KcUMbh9bN98_HQM3Hc9bqzHZUf3U49TGRIjlLK422D8s_6H-gJOd2bm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2802488540</pqid></control><display><type>article</type><title>Data-Driven Approach for Modeling Coagulation Kinetics</title><source>Springer Nature - Complete Springer Journals</source><creator>Lukashevich, D. ; Ovchinnikov, G. V. ; Tyukin, I. Yu ; Matveev, S. A. ; Brilliantov, N. V.</creator><creatorcontrib>Lukashevich, D. ; Ovchinnikov, G. V. ; Tyukin, I. Yu ; Matveev, S. A. ; Brilliantov, N. V.</creatorcontrib><description>Two approaches for the data-driven modeling of aggregation kinetics, described by Smoluchowski equations, are analyzed for binary and ternary coagulation. The first approach uses the dynamic mode decomposition (DMD) and the second one is based on the artificial neural networks (ANN). We obtain the numerical solution of the Smoluchowski equations and compare it with the predictions yielding by DMD and ANN methods. To construct the forecast for the solution, the initial stage of the system evolution was used. We demonstrate that the DMD approach can accurately predict the size distribution of the aggregates up to the time, five times larger than the training time. In contrast, the straightforward application of the ANN approach fails to provide an accurate forecast. Hence we conclude that the DMD approach is an effective tool for modeling aggregation kinetics, even for complex aggregation events. At the same time the application of the ANN approach requires its further adaptation for the studied system, perhaps by implementation of physically-informed ANN and specially tailored loss functions.</description><identifier>ISSN: 1046-283X</identifier><identifier>EISSN: 1573-837X</identifier><identifier>DOI: 10.1007/s10598-023-09574-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Agglomeration ; Applications of Mathematics ; Artificial neural networks ; Coagulation ; Computational Mathematics and Numerical Analysis ; Kinetics ; Mathematical Modeling and Industrial Mathematics ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Optimization ; Size distribution</subject><ispartof>Computational mathematics and modeling, 2022-07, Vol.33 (3), p.310-318</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2345-3f14d620c7b3b10fe961bef5e284bd381ba0612edc2739d6e2e207fe54ea6023</citedby><cites>FETCH-LOGICAL-c2345-3f14d620c7b3b10fe961bef5e284bd381ba0612edc2739d6e2e207fe54ea6023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10598-023-09574-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10598-023-09574-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Lukashevich, D.</creatorcontrib><creatorcontrib>Ovchinnikov, G. V.</creatorcontrib><creatorcontrib>Tyukin, I. Yu</creatorcontrib><creatorcontrib>Matveev, S. A.</creatorcontrib><creatorcontrib>Brilliantov, N. V.</creatorcontrib><title>Data-Driven Approach for Modeling Coagulation Kinetics</title><title>Computational mathematics and modeling</title><addtitle>Comput Math Model</addtitle><description>Two approaches for the data-driven modeling of aggregation kinetics, described by Smoluchowski equations, are analyzed for binary and ternary coagulation. The first approach uses the dynamic mode decomposition (DMD) and the second one is based on the artificial neural networks (ANN). We obtain the numerical solution of the Smoluchowski equations and compare it with the predictions yielding by DMD and ANN methods. To construct the forecast for the solution, the initial stage of the system evolution was used. We demonstrate that the DMD approach can accurately predict the size distribution of the aggregates up to the time, five times larger than the training time. In contrast, the straightforward application of the ANN approach fails to provide an accurate forecast. Hence we conclude that the DMD approach is an effective tool for modeling aggregation kinetics, even for complex aggregation events. At the same time the application of the ANN approach requires its further adaptation for the studied system, perhaps by implementation of physically-informed ANN and specially tailored loss functions.</description><subject>Agglomeration</subject><subject>Applications of Mathematics</subject><subject>Artificial neural networks</subject><subject>Coagulation</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Kinetics</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Optimization</subject><subject>Size distribution</subject><issn>1046-283X</issn><issn>1573-837X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPwzAQhC0EEqXwBzhF4mxYv51j1fISRVx66M1yknVJVZJip0j8ewxB4sZp9zDf7M4QcsngmgGYm8RAlZYCFxRKZSRVR2TClBHUCrM-zjtITbkV61NyltIWACwXMCF64QdPF7H9wK6Y7fex9_VrEfpYPPcN7tpuU8x7vzns_ND2XfHUdji0dTonJ8HvEl78zilZ3d2u5g90-XL_OJ8tac2FVFQEJhvNoTaVqBgELDWrMCjkVlaNsKzyoBnHpuZGlI1GjhxMQCXR6xxmSq5G2_zX-wHT4Lb9IXb5ouMWuLRWScgqPqrq2KcUMbh9bN98_HQM3Hc9bqzHZUf3U49TGRIjlLK422D8s_6H-gJOd2bm</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Lukashevich, D.</creator><creator>Ovchinnikov, G. V.</creator><creator>Tyukin, I. Yu</creator><creator>Matveev, S. A.</creator><creator>Brilliantov, N. V.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220701</creationdate><title>Data-Driven Approach for Modeling Coagulation Kinetics</title><author>Lukashevich, D. ; Ovchinnikov, G. V. ; Tyukin, I. Yu ; Matveev, S. A. ; Brilliantov, N. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2345-3f14d620c7b3b10fe961bef5e284bd381ba0612edc2739d6e2e207fe54ea6023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Agglomeration</topic><topic>Applications of Mathematics</topic><topic>Artificial neural networks</topic><topic>Coagulation</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Kinetics</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Optimization</topic><topic>Size distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lukashevich, D.</creatorcontrib><creatorcontrib>Ovchinnikov, G. V.</creatorcontrib><creatorcontrib>Tyukin, I. Yu</creatorcontrib><creatorcontrib>Matveev, S. A.</creatorcontrib><creatorcontrib>Brilliantov, N. V.</creatorcontrib><collection>CrossRef</collection><jtitle>Computational mathematics and modeling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lukashevich, D.</au><au>Ovchinnikov, G. V.</au><au>Tyukin, I. Yu</au><au>Matveev, S. A.</au><au>Brilliantov, N. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data-Driven Approach for Modeling Coagulation Kinetics</atitle><jtitle>Computational mathematics and modeling</jtitle><stitle>Comput Math Model</stitle><date>2022-07-01</date><risdate>2022</risdate><volume>33</volume><issue>3</issue><spage>310</spage><epage>318</epage><pages>310-318</pages><issn>1046-283X</issn><eissn>1573-837X</eissn><abstract>Two approaches for the data-driven modeling of aggregation kinetics, described by Smoluchowski equations, are analyzed for binary and ternary coagulation. The first approach uses the dynamic mode decomposition (DMD) and the second one is based on the artificial neural networks (ANN). We obtain the numerical solution of the Smoluchowski equations and compare it with the predictions yielding by DMD and ANN methods. To construct the forecast for the solution, the initial stage of the system evolution was used. We demonstrate that the DMD approach can accurately predict the size distribution of the aggregates up to the time, five times larger than the training time. In contrast, the straightforward application of the ANN approach fails to provide an accurate forecast. Hence we conclude that the DMD approach is an effective tool for modeling aggregation kinetics, even for complex aggregation events. At the same time the application of the ANN approach requires its further adaptation for the studied system, perhaps by implementation of physically-informed ANN and specially tailored loss functions.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10598-023-09574-5</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1046-283X
ispartof Computational mathematics and modeling, 2022-07, Vol.33 (3), p.310-318
issn 1046-283X
1573-837X
language eng
recordid cdi_proquest_journals_2802488540
source Springer Nature - Complete Springer Journals
subjects Agglomeration
Applications of Mathematics
Artificial neural networks
Coagulation
Computational Mathematics and Numerical Analysis
Kinetics
Mathematical Modeling and Industrial Mathematics
Mathematical models
Mathematics
Mathematics and Statistics
Optimization
Size distribution
title Data-Driven Approach for Modeling Coagulation Kinetics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T11%3A38%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data-Driven%20Approach%20for%20Modeling%20Coagulation%20Kinetics&rft.jtitle=Computational%20mathematics%20and%20modeling&rft.au=Lukashevich,%20D.&rft.date=2022-07-01&rft.volume=33&rft.issue=3&rft.spage=310&rft.epage=318&rft.pages=310-318&rft.issn=1046-283X&rft.eissn=1573-837X&rft_id=info:doi/10.1007/s10598-023-09574-5&rft_dat=%3Cproquest_cross%3E2802488540%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2802488540&rft_id=info:pmid/&rfr_iscdi=true