Data-Driven Approach for Modeling Coagulation Kinetics
Two approaches for the data-driven modeling of aggregation kinetics, described by Smoluchowski equations, are analyzed for binary and ternary coagulation. The first approach uses the dynamic mode decomposition (DMD) and the second one is based on the artificial neural networks (ANN). We obtain the n...
Gespeichert in:
Veröffentlicht in: | Computational mathematics and modeling 2022-07, Vol.33 (3), p.310-318 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 318 |
---|---|
container_issue | 3 |
container_start_page | 310 |
container_title | Computational mathematics and modeling |
container_volume | 33 |
creator | Lukashevich, D. Ovchinnikov, G. V. Tyukin, I. Yu Matveev, S. A. Brilliantov, N. V. |
description | Two approaches for the data-driven modeling of aggregation kinetics, described by Smoluchowski equations, are analyzed for binary and ternary coagulation. The first approach uses the dynamic mode decomposition (DMD) and the second one is based on the artificial neural networks (ANN). We obtain the numerical solution of the Smoluchowski equations and compare it with the predictions yielding by DMD and ANN methods. To construct the forecast for the solution, the initial stage of the system evolution was used. We demonstrate that the DMD approach can accurately predict the size distribution of the aggregates up to the time, five times larger than the training time. In contrast, the straightforward application of the ANN approach fails to provide an accurate forecast. Hence we conclude that the DMD approach is an effective tool for modeling aggregation kinetics, even for complex aggregation events. At the same time the application of the ANN approach requires its further adaptation for the studied system, perhaps by implementation of physically-informed ANN and specially tailored loss functions. |
doi_str_mv | 10.1007/s10598-023-09574-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2802488540</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2802488540</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2345-3f14d620c7b3b10fe961bef5e284bd381ba0612edc2739d6e2e207fe54ea6023</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EEqXwBzhF4mxYv51j1fISRVx66M1yknVJVZJip0j8ewxB4sZp9zDf7M4QcsngmgGYm8RAlZYCFxRKZSRVR2TClBHUCrM-zjtITbkV61NyltIWACwXMCF64QdPF7H9wK6Y7fex9_VrEfpYPPcN7tpuU8x7vzns_ND2XfHUdji0dTonJ8HvEl78zilZ3d2u5g90-XL_OJ8tac2FVFQEJhvNoTaVqBgELDWrMCjkVlaNsKzyoBnHpuZGlI1GjhxMQCXR6xxmSq5G2_zX-wHT4Lb9IXb5ouMWuLRWScgqPqrq2KcUMbh9bN98_HQM3Hc9bqzHZUf3U49TGRIjlLK422D8s_6H-gJOd2bm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2802488540</pqid></control><display><type>article</type><title>Data-Driven Approach for Modeling Coagulation Kinetics</title><source>Springer Nature - Complete Springer Journals</source><creator>Lukashevich, D. ; Ovchinnikov, G. V. ; Tyukin, I. Yu ; Matveev, S. A. ; Brilliantov, N. V.</creator><creatorcontrib>Lukashevich, D. ; Ovchinnikov, G. V. ; Tyukin, I. Yu ; Matveev, S. A. ; Brilliantov, N. V.</creatorcontrib><description>Two approaches for the data-driven modeling of aggregation kinetics, described by Smoluchowski equations, are analyzed for binary and ternary coagulation. The first approach uses the dynamic mode decomposition (DMD) and the second one is based on the artificial neural networks (ANN). We obtain the numerical solution of the Smoluchowski equations and compare it with the predictions yielding by DMD and ANN methods. To construct the forecast for the solution, the initial stage of the system evolution was used. We demonstrate that the DMD approach can accurately predict the size distribution of the aggregates up to the time, five times larger than the training time. In contrast, the straightforward application of the ANN approach fails to provide an accurate forecast. Hence we conclude that the DMD approach is an effective tool for modeling aggregation kinetics, even for complex aggregation events. At the same time the application of the ANN approach requires its further adaptation for the studied system, perhaps by implementation of physically-informed ANN and specially tailored loss functions.</description><identifier>ISSN: 1046-283X</identifier><identifier>EISSN: 1573-837X</identifier><identifier>DOI: 10.1007/s10598-023-09574-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Agglomeration ; Applications of Mathematics ; Artificial neural networks ; Coagulation ; Computational Mathematics and Numerical Analysis ; Kinetics ; Mathematical Modeling and Industrial Mathematics ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Optimization ; Size distribution</subject><ispartof>Computational mathematics and modeling, 2022-07, Vol.33 (3), p.310-318</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2345-3f14d620c7b3b10fe961bef5e284bd381ba0612edc2739d6e2e207fe54ea6023</citedby><cites>FETCH-LOGICAL-c2345-3f14d620c7b3b10fe961bef5e284bd381ba0612edc2739d6e2e207fe54ea6023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10598-023-09574-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10598-023-09574-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Lukashevich, D.</creatorcontrib><creatorcontrib>Ovchinnikov, G. V.</creatorcontrib><creatorcontrib>Tyukin, I. Yu</creatorcontrib><creatorcontrib>Matveev, S. A.</creatorcontrib><creatorcontrib>Brilliantov, N. V.</creatorcontrib><title>Data-Driven Approach for Modeling Coagulation Kinetics</title><title>Computational mathematics and modeling</title><addtitle>Comput Math Model</addtitle><description>Two approaches for the data-driven modeling of aggregation kinetics, described by Smoluchowski equations, are analyzed for binary and ternary coagulation. The first approach uses the dynamic mode decomposition (DMD) and the second one is based on the artificial neural networks (ANN). We obtain the numerical solution of the Smoluchowski equations and compare it with the predictions yielding by DMD and ANN methods. To construct the forecast for the solution, the initial stage of the system evolution was used. We demonstrate that the DMD approach can accurately predict the size distribution of the aggregates up to the time, five times larger than the training time. In contrast, the straightforward application of the ANN approach fails to provide an accurate forecast. Hence we conclude that the DMD approach is an effective tool for modeling aggregation kinetics, even for complex aggregation events. At the same time the application of the ANN approach requires its further adaptation for the studied system, perhaps by implementation of physically-informed ANN and specially tailored loss functions.</description><subject>Agglomeration</subject><subject>Applications of Mathematics</subject><subject>Artificial neural networks</subject><subject>Coagulation</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Kinetics</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Optimization</subject><subject>Size distribution</subject><issn>1046-283X</issn><issn>1573-837X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPwzAQhC0EEqXwBzhF4mxYv51j1fISRVx66M1yknVJVZJip0j8ewxB4sZp9zDf7M4QcsngmgGYm8RAlZYCFxRKZSRVR2TClBHUCrM-zjtITbkV61NyltIWACwXMCF64QdPF7H9wK6Y7fex9_VrEfpYPPcN7tpuU8x7vzns_ND2XfHUdji0dTonJ8HvEl78zilZ3d2u5g90-XL_OJ8tac2FVFQEJhvNoTaVqBgELDWrMCjkVlaNsKzyoBnHpuZGlI1GjhxMQCXR6xxmSq5G2_zX-wHT4Lb9IXb5ouMWuLRWScgqPqrq2KcUMbh9bN98_HQM3Hc9bqzHZUf3U49TGRIjlLK422D8s_6H-gJOd2bm</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Lukashevich, D.</creator><creator>Ovchinnikov, G. V.</creator><creator>Tyukin, I. Yu</creator><creator>Matveev, S. A.</creator><creator>Brilliantov, N. V.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220701</creationdate><title>Data-Driven Approach for Modeling Coagulation Kinetics</title><author>Lukashevich, D. ; Ovchinnikov, G. V. ; Tyukin, I. Yu ; Matveev, S. A. ; Brilliantov, N. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2345-3f14d620c7b3b10fe961bef5e284bd381ba0612edc2739d6e2e207fe54ea6023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Agglomeration</topic><topic>Applications of Mathematics</topic><topic>Artificial neural networks</topic><topic>Coagulation</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Kinetics</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Optimization</topic><topic>Size distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lukashevich, D.</creatorcontrib><creatorcontrib>Ovchinnikov, G. V.</creatorcontrib><creatorcontrib>Tyukin, I. Yu</creatorcontrib><creatorcontrib>Matveev, S. A.</creatorcontrib><creatorcontrib>Brilliantov, N. V.</creatorcontrib><collection>CrossRef</collection><jtitle>Computational mathematics and modeling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lukashevich, D.</au><au>Ovchinnikov, G. V.</au><au>Tyukin, I. Yu</au><au>Matveev, S. A.</au><au>Brilliantov, N. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data-Driven Approach for Modeling Coagulation Kinetics</atitle><jtitle>Computational mathematics and modeling</jtitle><stitle>Comput Math Model</stitle><date>2022-07-01</date><risdate>2022</risdate><volume>33</volume><issue>3</issue><spage>310</spage><epage>318</epage><pages>310-318</pages><issn>1046-283X</issn><eissn>1573-837X</eissn><abstract>Two approaches for the data-driven modeling of aggregation kinetics, described by Smoluchowski equations, are analyzed for binary and ternary coagulation. The first approach uses the dynamic mode decomposition (DMD) and the second one is based on the artificial neural networks (ANN). We obtain the numerical solution of the Smoluchowski equations and compare it with the predictions yielding by DMD and ANN methods. To construct the forecast for the solution, the initial stage of the system evolution was used. We demonstrate that the DMD approach can accurately predict the size distribution of the aggregates up to the time, five times larger than the training time. In contrast, the straightforward application of the ANN approach fails to provide an accurate forecast. Hence we conclude that the DMD approach is an effective tool for modeling aggregation kinetics, even for complex aggregation events. At the same time the application of the ANN approach requires its further adaptation for the studied system, perhaps by implementation of physically-informed ANN and specially tailored loss functions.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10598-023-09574-5</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1046-283X |
ispartof | Computational mathematics and modeling, 2022-07, Vol.33 (3), p.310-318 |
issn | 1046-283X 1573-837X |
language | eng |
recordid | cdi_proquest_journals_2802488540 |
source | Springer Nature - Complete Springer Journals |
subjects | Agglomeration Applications of Mathematics Artificial neural networks Coagulation Computational Mathematics and Numerical Analysis Kinetics Mathematical Modeling and Industrial Mathematics Mathematical models Mathematics Mathematics and Statistics Optimization Size distribution |
title | Data-Driven Approach for Modeling Coagulation Kinetics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T11%3A38%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data-Driven%20Approach%20for%20Modeling%20Coagulation%20Kinetics&rft.jtitle=Computational%20mathematics%20and%20modeling&rft.au=Lukashevich,%20D.&rft.date=2022-07-01&rft.volume=33&rft.issue=3&rft.spage=310&rft.epage=318&rft.pages=310-318&rft.issn=1046-283X&rft.eissn=1573-837X&rft_id=info:doi/10.1007/s10598-023-09574-5&rft_dat=%3Cproquest_cross%3E2802488540%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2802488540&rft_id=info:pmid/&rfr_iscdi=true |