Preservation properties for products and sums of metric structures
This paper concerns product constructions within the continuous-logic framework of Ben Yaacov, Berenstein, Henson, and Usvyatsov. Continuous-logic analogues are presented for the direct product, direct sum, and almost everywhere direct product analyzed in the work of Feferman and Vaught. These const...
Gespeichert in:
Veröffentlicht in: | Archive for mathematical logic 2023-05, Vol.62 (3-4), p.427-469 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 469 |
---|---|
container_issue | 3-4 |
container_start_page | 427 |
container_title | Archive for mathematical logic |
container_volume | 62 |
creator | Karker, Mary Leah |
description | This paper concerns product constructions within the continuous-logic framework of Ben Yaacov, Berenstein, Henson, and Usvyatsov. Continuous-logic analogues are presented for the direct product, direct sum, and almost everywhere direct product analyzed in the work of Feferman and Vaught. These constructions are shown to possess a number of preservation properties analogous to those enjoyed by their classical counterparts in ordinary first-order logic: for example, each product preserves elementary equivalence in an appropriate sense; and if for
i
∈
N
M
i
is a metric structure and the sentence
θ
is true in
∏
i
=
0
k
M
i
for every
k
∈
N
, then
θ
is true in
∏
i
∈
N
M
i
. |
doi_str_mv | 10.1007/s00153-022-00848-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2802051799</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2802051799</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-394c28b019c01cb0f13386ac58fe4ed2469b5f2e675c4d4c28f7b952b17cdb6b3</originalsourceid><addsrcrecordid>eNp9kEtLBDEQhIMouK7-AU8Bz9HOc5KjLr5gQQ96DpNMIrO4M2uSEfz3Zh3Bm6em6K-qm0LonMIlBWiuMgCVnABjBEALTeAALajgVSolD9ECDOdEaqGO0UnOm4ozrekC3TynkEP6bEs_DniXxl1IpQ8ZxzHtZTf5knE7dDhP24zHiLehpN7jXFJdTdV9io5i-57D2e9cote725fVA1k_3T-urtfEswYK4UZ4ph1Q44F6B5FyrlXrpY5BhI4JZZyMLKhGetHt2dg4I5mjje-ccnyJLubc-tbHFHKxm3FKQz1pmQYGkjbGVIrNlE9jzilEu0v9tk1floLdd2Xnrmztyv50ZaGa-GzKFR7eQvqL_sf1Ddk3bLE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2802051799</pqid></control><display><type>article</type><title>Preservation properties for products and sums of metric structures</title><source>2022 ECC(Springer)</source><creator>Karker, Mary Leah</creator><creatorcontrib>Karker, Mary Leah</creatorcontrib><description>This paper concerns product constructions within the continuous-logic framework of Ben Yaacov, Berenstein, Henson, and Usvyatsov. Continuous-logic analogues are presented for the direct product, direct sum, and almost everywhere direct product analyzed in the work of Feferman and Vaught. These constructions are shown to possess a number of preservation properties analogous to those enjoyed by their classical counterparts in ordinary first-order logic: for example, each product preserves elementary equivalence in an appropriate sense; and if for
i
∈
N
M
i
is a metric structure and the sentence
θ
is true in
∏
i
=
0
k
M
i
for every
k
∈
N
, then
θ
is true in
∏
i
∈
N
M
i
.</description><identifier>ISSN: 0933-5846</identifier><identifier>EISSN: 1432-0665</identifier><identifier>DOI: 10.1007/s00153-022-00848-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algebra ; Logic ; Mathematical Logic and Foundations ; Mathematics ; Mathematics and Statistics</subject><ispartof>Archive for mathematical logic, 2023-05, Vol.62 (3-4), p.427-469</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-394c28b019c01cb0f13386ac58fe4ed2469b5f2e675c4d4c28f7b952b17cdb6b3</cites><orcidid>0000-0001-8090-0831</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00153-022-00848-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00153-022-00848-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Karker, Mary Leah</creatorcontrib><title>Preservation properties for products and sums of metric structures</title><title>Archive for mathematical logic</title><addtitle>Arch. Math. Logic</addtitle><description>This paper concerns product constructions within the continuous-logic framework of Ben Yaacov, Berenstein, Henson, and Usvyatsov. Continuous-logic analogues are presented for the direct product, direct sum, and almost everywhere direct product analyzed in the work of Feferman and Vaught. These constructions are shown to possess a number of preservation properties analogous to those enjoyed by their classical counterparts in ordinary first-order logic: for example, each product preserves elementary equivalence in an appropriate sense; and if for
i
∈
N
M
i
is a metric structure and the sentence
θ
is true in
∏
i
=
0
k
M
i
for every
k
∈
N
, then
θ
is true in
∏
i
∈
N
M
i
.</description><subject>Algebra</subject><subject>Logic</subject><subject>Mathematical Logic and Foundations</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>0933-5846</issn><issn>1432-0665</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLBDEQhIMouK7-AU8Bz9HOc5KjLr5gQQ96DpNMIrO4M2uSEfz3Zh3Bm6em6K-qm0LonMIlBWiuMgCVnABjBEALTeAALajgVSolD9ECDOdEaqGO0UnOm4ozrekC3TynkEP6bEs_DniXxl1IpQ8ZxzHtZTf5knE7dDhP24zHiLehpN7jXFJdTdV9io5i-57D2e9cote725fVA1k_3T-urtfEswYK4UZ4ph1Q44F6B5FyrlXrpY5BhI4JZZyMLKhGetHt2dg4I5mjje-ccnyJLubc-tbHFHKxm3FKQz1pmQYGkjbGVIrNlE9jzilEu0v9tk1floLdd2Xnrmztyv50ZaGa-GzKFR7eQvqL_sf1Ddk3bLE</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Karker, Mary Leah</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8090-0831</orcidid></search><sort><creationdate>20230501</creationdate><title>Preservation properties for products and sums of metric structures</title><author>Karker, Mary Leah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-394c28b019c01cb0f13386ac58fe4ed2469b5f2e675c4d4c28f7b952b17cdb6b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algebra</topic><topic>Logic</topic><topic>Mathematical Logic and Foundations</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karker, Mary Leah</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Archive for mathematical logic</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karker, Mary Leah</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Preservation properties for products and sums of metric structures</atitle><jtitle>Archive for mathematical logic</jtitle><stitle>Arch. Math. Logic</stitle><date>2023-05-01</date><risdate>2023</risdate><volume>62</volume><issue>3-4</issue><spage>427</spage><epage>469</epage><pages>427-469</pages><issn>0933-5846</issn><eissn>1432-0665</eissn><abstract>This paper concerns product constructions within the continuous-logic framework of Ben Yaacov, Berenstein, Henson, and Usvyatsov. Continuous-logic analogues are presented for the direct product, direct sum, and almost everywhere direct product analyzed in the work of Feferman and Vaught. These constructions are shown to possess a number of preservation properties analogous to those enjoyed by their classical counterparts in ordinary first-order logic: for example, each product preserves elementary equivalence in an appropriate sense; and if for
i
∈
N
M
i
is a metric structure and the sentence
θ
is true in
∏
i
=
0
k
M
i
for every
k
∈
N
, then
θ
is true in
∏
i
∈
N
M
i
.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00153-022-00848-0</doi><tpages>43</tpages><orcidid>https://orcid.org/0000-0001-8090-0831</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0933-5846 |
ispartof | Archive for mathematical logic, 2023-05, Vol.62 (3-4), p.427-469 |
issn | 0933-5846 1432-0665 |
language | eng |
recordid | cdi_proquest_journals_2802051799 |
source | 2022 ECC(Springer) |
subjects | Algebra Logic Mathematical Logic and Foundations Mathematics Mathematics and Statistics |
title | Preservation properties for products and sums of metric structures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T07%3A36%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Preservation%20properties%20for%20products%20and%20sums%20of%20metric%20structures&rft.jtitle=Archive%20for%20mathematical%20logic&rft.au=Karker,%20Mary%20Leah&rft.date=2023-05-01&rft.volume=62&rft.issue=3-4&rft.spage=427&rft.epage=469&rft.pages=427-469&rft.issn=0933-5846&rft.eissn=1432-0665&rft_id=info:doi/10.1007/s00153-022-00848-0&rft_dat=%3Cproquest_cross%3E2802051799%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2802051799&rft_id=info:pmid/&rfr_iscdi=true |