On Polynomials Defined by the Discrete Rodrigues Formula
We study polynomials given by the discrete Rodrigues formula, which generalizes a similar formula for Meixner polynomials. Such polynomials are associated with the theory of Diophantine approximations. The saddle point method is used to find the limit distribution of zeros of scaled polynomials. An...
Gespeichert in:
Veröffentlicht in: | Mathematical Notes 2023-04, Vol.113 (3-4), p.420-433 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 433 |
---|---|
container_issue | 3-4 |
container_start_page | 420 |
container_title | Mathematical Notes |
container_volume | 113 |
creator | Sorokin, V. N. |
description | We study polynomials given by the discrete Rodrigues formula, which generalizes a similar formula for Meixner polynomials. Such polynomials are associated with the theory of Diophantine approximations. The saddle point method is used to find the limit distribution of zeros of scaled polynomials. An answer is received in terms of a meromorphic function on a compact Riemann surface and is interpreted using the vector equilibrium problem of the logarithmic potential theory. |
doi_str_mv | 10.1134/S0001434623030112 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2801712104</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2801712104</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-ea4640598934be72bcfc42acc1c2a12073b23c98b74fbda5c38468300612dea33</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWKsfwFvA8-pMJptNj9JaFQoV_5yXbDZbt7SbmmwP_fZmqeBBPA3De7_34DF2jXCLSPLuDQBQklSCgABRnLAR5gVlWhfqlI0GORv0c3YR4zp9qBBGTC87_uI3h85vW7OJfOaatnM1rw68_3R81kYbXO_4q69Du9q7yOc-bPcbc8nOmgS4q587Zh_zh_fpU7ZYPj5P7xeZJVR95oxUEvKJnpCsXCEq21gpjLVohUEBBVWC7ERXhWyq2uSWtFSaABSK2hmiMbs55u6C_0r9fbn2-9ClylJowAIFgkwuPLps8DEG15S70G5NOJQI5TBQ-WegxIgjE5O3W7nwm_w_9A29Z2Uv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2801712104</pqid></control><display><type>article</type><title>On Polynomials Defined by the Discrete Rodrigues Formula</title><source>Springer Online Journals</source><creator>Sorokin, V. N.</creator><creatorcontrib>Sorokin, V. N.</creatorcontrib><description>We study polynomials given by the discrete Rodrigues formula, which generalizes a similar formula for Meixner polynomials. Such polynomials are associated with the theory of Diophantine approximations. The saddle point method is used to find the limit distribution of zeros of scaled polynomials. An answer is received in terms of a meromorphic function on a compact Riemann surface and is interpreted using the vector equilibrium problem of the logarithmic potential theory.</description><identifier>ISSN: 0001-4346</identifier><identifier>ISSN: 1067-9073</identifier><identifier>EISSN: 1573-8876</identifier><identifier>DOI: 10.1134/S0001434623030112</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>14/34 ; 639/766/189 ; 639/766/530 ; 639/766/747 ; Mathematics ; Mathematics and Statistics ; Meromorphic functions ; Polynomials ; Potential theory ; Riemann surfaces ; Saddle points</subject><ispartof>Mathematical Notes, 2023-04, Vol.113 (3-4), p.420-433</ispartof><rights>Pleiades Publishing, Ltd. 2023</rights><rights>Pleiades Publishing, Ltd. 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-ea4640598934be72bcfc42acc1c2a12073b23c98b74fbda5c38468300612dea33</citedby><cites>FETCH-LOGICAL-c316t-ea4640598934be72bcfc42acc1c2a12073b23c98b74fbda5c38468300612dea33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0001434623030112$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0001434623030112$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Sorokin, V. N.</creatorcontrib><title>On Polynomials Defined by the Discrete Rodrigues Formula</title><title>Mathematical Notes</title><addtitle>Math Notes</addtitle><description>We study polynomials given by the discrete Rodrigues formula, which generalizes a similar formula for Meixner polynomials. Such polynomials are associated with the theory of Diophantine approximations. The saddle point method is used to find the limit distribution of zeros of scaled polynomials. An answer is received in terms of a meromorphic function on a compact Riemann surface and is interpreted using the vector equilibrium problem of the logarithmic potential theory.</description><subject>14/34</subject><subject>639/766/189</subject><subject>639/766/530</subject><subject>639/766/747</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Meromorphic functions</subject><subject>Polynomials</subject><subject>Potential theory</subject><subject>Riemann surfaces</subject><subject>Saddle points</subject><issn>0001-4346</issn><issn>1067-9073</issn><issn>1573-8876</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LAzEQxYMoWKsfwFvA8-pMJptNj9JaFQoV_5yXbDZbt7SbmmwP_fZmqeBBPA3De7_34DF2jXCLSPLuDQBQklSCgABRnLAR5gVlWhfqlI0GORv0c3YR4zp9qBBGTC87_uI3h85vW7OJfOaatnM1rw68_3R81kYbXO_4q69Du9q7yOc-bPcbc8nOmgS4q587Zh_zh_fpU7ZYPj5P7xeZJVR95oxUEvKJnpCsXCEq21gpjLVohUEBBVWC7ERXhWyq2uSWtFSaABSK2hmiMbs55u6C_0r9fbn2-9ClylJowAIFgkwuPLps8DEG15S70G5NOJQI5TBQ-WegxIgjE5O3W7nwm_w_9A29Z2Uv</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Sorokin, V. N.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230401</creationdate><title>On Polynomials Defined by the Discrete Rodrigues Formula</title><author>Sorokin, V. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-ea4640598934be72bcfc42acc1c2a12073b23c98b74fbda5c38468300612dea33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>14/34</topic><topic>639/766/189</topic><topic>639/766/530</topic><topic>639/766/747</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Meromorphic functions</topic><topic>Polynomials</topic><topic>Potential theory</topic><topic>Riemann surfaces</topic><topic>Saddle points</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sorokin, V. N.</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematical Notes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sorokin, V. N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Polynomials Defined by the Discrete Rodrigues Formula</atitle><jtitle>Mathematical Notes</jtitle><stitle>Math Notes</stitle><date>2023-04-01</date><risdate>2023</risdate><volume>113</volume><issue>3-4</issue><spage>420</spage><epage>433</epage><pages>420-433</pages><issn>0001-4346</issn><issn>1067-9073</issn><eissn>1573-8876</eissn><abstract>We study polynomials given by the discrete Rodrigues formula, which generalizes a similar formula for Meixner polynomials. Such polynomials are associated with the theory of Diophantine approximations. The saddle point method is used to find the limit distribution of zeros of scaled polynomials. An answer is received in terms of a meromorphic function on a compact Riemann surface and is interpreted using the vector equilibrium problem of the logarithmic potential theory.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0001434623030112</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-4346 |
ispartof | Mathematical Notes, 2023-04, Vol.113 (3-4), p.420-433 |
issn | 0001-4346 1067-9073 1573-8876 |
language | eng |
recordid | cdi_proquest_journals_2801712104 |
source | Springer Online Journals |
subjects | 14/34 639/766/189 639/766/530 639/766/747 Mathematics Mathematics and Statistics Meromorphic functions Polynomials Potential theory Riemann surfaces Saddle points |
title | On Polynomials Defined by the Discrete Rodrigues Formula |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T15%3A47%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Polynomials%20Defined%20by%20the%20Discrete%20Rodrigues%20Formula&rft.jtitle=Mathematical%20Notes&rft.au=Sorokin,%20V.%20N.&rft.date=2023-04-01&rft.volume=113&rft.issue=3-4&rft.spage=420&rft.epage=433&rft.pages=420-433&rft.issn=0001-4346&rft.eissn=1573-8876&rft_id=info:doi/10.1134/S0001434623030112&rft_dat=%3Cproquest_cross%3E2801712104%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2801712104&rft_id=info:pmid/&rfr_iscdi=true |