On Polynomials Defined by the Discrete Rodrigues Formula

We study polynomials given by the discrete Rodrigues formula, which generalizes a similar formula for Meixner polynomials. Such polynomials are associated with the theory of Diophantine approximations. The saddle point method is used to find the limit distribution of zeros of scaled polynomials. An...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical Notes 2023-04, Vol.113 (3-4), p.420-433
1. Verfasser: Sorokin, V. N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 433
container_issue 3-4
container_start_page 420
container_title Mathematical Notes
container_volume 113
creator Sorokin, V. N.
description We study polynomials given by the discrete Rodrigues formula, which generalizes a similar formula for Meixner polynomials. Such polynomials are associated with the theory of Diophantine approximations. The saddle point method is used to find the limit distribution of zeros of scaled polynomials. An answer is received in terms of a meromorphic function on a compact Riemann surface and is interpreted using the vector equilibrium problem of the logarithmic potential theory.
doi_str_mv 10.1134/S0001434623030112
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2801712104</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2801712104</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-ea4640598934be72bcfc42acc1c2a12073b23c98b74fbda5c38468300612dea33</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWKsfwFvA8-pMJptNj9JaFQoV_5yXbDZbt7SbmmwP_fZmqeBBPA3De7_34DF2jXCLSPLuDQBQklSCgABRnLAR5gVlWhfqlI0GORv0c3YR4zp9qBBGTC87_uI3h85vW7OJfOaatnM1rw68_3R81kYbXO_4q69Du9q7yOc-bPcbc8nOmgS4q587Zh_zh_fpU7ZYPj5P7xeZJVR95oxUEvKJnpCsXCEq21gpjLVohUEBBVWC7ERXhWyq2uSWtFSaABSK2hmiMbs55u6C_0r9fbn2-9ClylJowAIFgkwuPLps8DEG15S70G5NOJQI5TBQ-WegxIgjE5O3W7nwm_w_9A29Z2Uv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2801712104</pqid></control><display><type>article</type><title>On Polynomials Defined by the Discrete Rodrigues Formula</title><source>Springer Online Journals</source><creator>Sorokin, V. N.</creator><creatorcontrib>Sorokin, V. N.</creatorcontrib><description>We study polynomials given by the discrete Rodrigues formula, which generalizes a similar formula for Meixner polynomials. Such polynomials are associated with the theory of Diophantine approximations. The saddle point method is used to find the limit distribution of zeros of scaled polynomials. An answer is received in terms of a meromorphic function on a compact Riemann surface and is interpreted using the vector equilibrium problem of the logarithmic potential theory.</description><identifier>ISSN: 0001-4346</identifier><identifier>ISSN: 1067-9073</identifier><identifier>EISSN: 1573-8876</identifier><identifier>DOI: 10.1134/S0001434623030112</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>14/34 ; 639/766/189 ; 639/766/530 ; 639/766/747 ; Mathematics ; Mathematics and Statistics ; Meromorphic functions ; Polynomials ; Potential theory ; Riemann surfaces ; Saddle points</subject><ispartof>Mathematical Notes, 2023-04, Vol.113 (3-4), p.420-433</ispartof><rights>Pleiades Publishing, Ltd. 2023</rights><rights>Pleiades Publishing, Ltd. 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-ea4640598934be72bcfc42acc1c2a12073b23c98b74fbda5c38468300612dea33</citedby><cites>FETCH-LOGICAL-c316t-ea4640598934be72bcfc42acc1c2a12073b23c98b74fbda5c38468300612dea33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0001434623030112$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0001434623030112$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Sorokin, V. N.</creatorcontrib><title>On Polynomials Defined by the Discrete Rodrigues Formula</title><title>Mathematical Notes</title><addtitle>Math Notes</addtitle><description>We study polynomials given by the discrete Rodrigues formula, which generalizes a similar formula for Meixner polynomials. Such polynomials are associated with the theory of Diophantine approximations. The saddle point method is used to find the limit distribution of zeros of scaled polynomials. An answer is received in terms of a meromorphic function on a compact Riemann surface and is interpreted using the vector equilibrium problem of the logarithmic potential theory.</description><subject>14/34</subject><subject>639/766/189</subject><subject>639/766/530</subject><subject>639/766/747</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Meromorphic functions</subject><subject>Polynomials</subject><subject>Potential theory</subject><subject>Riemann surfaces</subject><subject>Saddle points</subject><issn>0001-4346</issn><issn>1067-9073</issn><issn>1573-8876</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LAzEQxYMoWKsfwFvA8-pMJptNj9JaFQoV_5yXbDZbt7SbmmwP_fZmqeBBPA3De7_34DF2jXCLSPLuDQBQklSCgABRnLAR5gVlWhfqlI0GORv0c3YR4zp9qBBGTC87_uI3h85vW7OJfOaatnM1rw68_3R81kYbXO_4q69Du9q7yOc-bPcbc8nOmgS4q587Zh_zh_fpU7ZYPj5P7xeZJVR95oxUEvKJnpCsXCEq21gpjLVohUEBBVWC7ERXhWyq2uSWtFSaABSK2hmiMbs55u6C_0r9fbn2-9ClylJowAIFgkwuPLps8DEG15S70G5NOJQI5TBQ-WegxIgjE5O3W7nwm_w_9A29Z2Uv</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Sorokin, V. N.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230401</creationdate><title>On Polynomials Defined by the Discrete Rodrigues Formula</title><author>Sorokin, V. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-ea4640598934be72bcfc42acc1c2a12073b23c98b74fbda5c38468300612dea33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>14/34</topic><topic>639/766/189</topic><topic>639/766/530</topic><topic>639/766/747</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Meromorphic functions</topic><topic>Polynomials</topic><topic>Potential theory</topic><topic>Riemann surfaces</topic><topic>Saddle points</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sorokin, V. N.</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematical Notes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sorokin, V. N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Polynomials Defined by the Discrete Rodrigues Formula</atitle><jtitle>Mathematical Notes</jtitle><stitle>Math Notes</stitle><date>2023-04-01</date><risdate>2023</risdate><volume>113</volume><issue>3-4</issue><spage>420</spage><epage>433</epage><pages>420-433</pages><issn>0001-4346</issn><issn>1067-9073</issn><eissn>1573-8876</eissn><abstract>We study polynomials given by the discrete Rodrigues formula, which generalizes a similar formula for Meixner polynomials. Such polynomials are associated with the theory of Diophantine approximations. The saddle point method is used to find the limit distribution of zeros of scaled polynomials. An answer is received in terms of a meromorphic function on a compact Riemann surface and is interpreted using the vector equilibrium problem of the logarithmic potential theory.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0001434623030112</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-4346
ispartof Mathematical Notes, 2023-04, Vol.113 (3-4), p.420-433
issn 0001-4346
1067-9073
1573-8876
language eng
recordid cdi_proquest_journals_2801712104
source Springer Online Journals
subjects 14/34
639/766/189
639/766/530
639/766/747
Mathematics
Mathematics and Statistics
Meromorphic functions
Polynomials
Potential theory
Riemann surfaces
Saddle points
title On Polynomials Defined by the Discrete Rodrigues Formula
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T15%3A47%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Polynomials%20Defined%20by%20the%20Discrete%20Rodrigues%20Formula&rft.jtitle=Mathematical%20Notes&rft.au=Sorokin,%20V.%20N.&rft.date=2023-04-01&rft.volume=113&rft.issue=3-4&rft.spage=420&rft.epage=433&rft.pages=420-433&rft.issn=0001-4346&rft.eissn=1573-8876&rft_id=info:doi/10.1134/S0001434623030112&rft_dat=%3Cproquest_cross%3E2801712104%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2801712104&rft_id=info:pmid/&rfr_iscdi=true