The SWADE model for landslide dating in time series of optical satellite imagery

Landslides are destructive natural hazards that cause substantial loss of life and impact on natural and built environments. Landslide frequencies are important inputs for hazard assessments. However, dating landslides in remote areas is often challenging. We propose a novel landslide dating techniq...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Landslides 2023-05, Vol.20 (5), p.913-932
Hauptverfasser: Fu, Sheng, de Jong, Steven M., Deijns, Axel, Geertsema, Marten, de Haas, Tjalling
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 932
container_issue 5
container_start_page 913
container_title Landslides
container_volume 20
creator Fu, Sheng
de Jong, Steven M.
Deijns, Axel
Geertsema, Marten
de Haas, Tjalling
description Landslides are destructive natural hazards that cause substantial loss of life and impact on natural and built environments. Landslide frequencies are important inputs for hazard assessments. However, dating landslides in remote areas is often challenging. We propose a novel landslide dating technique based on Segmented WAvelet-DEnoising and stepwise linear fitting (SWADE), using the Landsat archive (1985–2017). SWADE employs the principle that vegetation is often removed by landsliding in vegetated areas, causing a temporal decrease in normalized difference vegetation index (NDVI). The applicability of SWADE and two previously published methods for landslide dating, harmonic modelling and LandTrendr, are evaluated using 66 known landslides in the Buckinghorse River area, northeastern British Columbia, Canada. SWADE identifies sudden changes of NDVI values in the time series and this may result in one or more probable landslide occurrence dates. The most-probable date range identified by SWADE detects 52% of the landslides within a maximum error of 1 year, and 62% of the landslides within a maximum error of 2 years. Comparatively, these numbers increase to 68% and 80% when including the two most-probable landslide date ranges, respectively. Harmonic modelling detects 79% of the landslides with a maximum error of 1 year, and 82% of the landslides with a maximum error of 2 years, but requires expert judgement and a well-developed seasonal vegetation cycle in contrast to SWADE. LandTrendr, originally developed for mapping deforestation, only detects 42% of landslides within a maximum error of 2 years. SWADE provides a promising fully automatic method for landslide dating, which can contribute to constructing landslide frequency-magnitude distributions in remote areas.
doi_str_mv 10.1007/s10346-022-02012-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2801404351</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2801404351</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-8cec61cd513d801abe1b858bf1091a2e87dfbec0449222ec127c005d7201cb0c3</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIlMIPcLLEObBr53msSnlIlUCiCG6WY2-KqzQpdjj07zEEwY3DaucwM7szjJ0jXCJAcRUQZJonIEQcQJGkB2yCeQQZYnn4i-H1mJ2EsAEQFchqwh5Xb8SfXmbXC77tLbW86T1vdWdD6yxxqwfXrbnr-OC2xAN5R4H3De93gzO65UEP1LZuIO62ek1-f8qOGt0GOvvZU_Z8s1jN75Llw-39fLZMjMzlkJSGTI7GZihtCahrwrrMyrpBqFALKgvb1GQgTSshBBkUhQHIbBHTmRqMnLKL0Xfn-_cPCoPa9B--iyeViIYppDJ6T5kYWcb3IXhq1M7HR_1eIaiv5tTYnIrNqe_mVBpFchSFSO5iqD_rf1SfEtlwEg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2801404351</pqid></control><display><type>article</type><title>The SWADE model for landslide dating in time series of optical satellite imagery</title><source>Springer Nature - Complete Springer Journals</source><creator>Fu, Sheng ; de Jong, Steven M. ; Deijns, Axel ; Geertsema, Marten ; de Haas, Tjalling</creator><creatorcontrib>Fu, Sheng ; de Jong, Steven M. ; Deijns, Axel ; Geertsema, Marten ; de Haas, Tjalling</creatorcontrib><description>Landslides are destructive natural hazards that cause substantial loss of life and impact on natural and built environments. Landslide frequencies are important inputs for hazard assessments. However, dating landslides in remote areas is often challenging. We propose a novel landslide dating technique based on Segmented WAvelet-DEnoising and stepwise linear fitting (SWADE), using the Landsat archive (1985–2017). SWADE employs the principle that vegetation is often removed by landsliding in vegetated areas, causing a temporal decrease in normalized difference vegetation index (NDVI). The applicability of SWADE and two previously published methods for landslide dating, harmonic modelling and LandTrendr, are evaluated using 66 known landslides in the Buckinghorse River area, northeastern British Columbia, Canada. SWADE identifies sudden changes of NDVI values in the time series and this may result in one or more probable landslide occurrence dates. The most-probable date range identified by SWADE detects 52% of the landslides within a maximum error of 1 year, and 62% of the landslides within a maximum error of 2 years. Comparatively, these numbers increase to 68% and 80% when including the two most-probable landslide date ranges, respectively. Harmonic modelling detects 79% of the landslides with a maximum error of 1 year, and 82% of the landslides with a maximum error of 2 years, but requires expert judgement and a well-developed seasonal vegetation cycle in contrast to SWADE. LandTrendr, originally developed for mapping deforestation, only detects 42% of landslides within a maximum error of 2 years. SWADE provides a promising fully automatic method for landslide dating, which can contribute to constructing landslide frequency-magnitude distributions in remote areas.</description><identifier>ISSN: 1612-510X</identifier><identifier>EISSN: 1612-5118</identifier><identifier>DOI: 10.1007/s10346-022-02012-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Agriculture ; Built environment ; Civil Engineering ; Dating ; Dating techniques ; Deforestation ; Earth and Environmental Science ; Earth Sciences ; Geography ; Hazard assessment ; Landsat ; Landsat satellites ; Landslides ; Landslides &amp; mudslides ; Modelling ; Natural Hazards ; Normalized difference vegetative index ; Original Paper ; Remote regions ; Remote sensing ; Satellite imagery ; Time series ; Urban environments ; Vegetation ; Vegetation index</subject><ispartof>Landslides, 2023-05, Vol.20 (5), p.913-932</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-8cec61cd513d801abe1b858bf1091a2e87dfbec0449222ec127c005d7201cb0c3</citedby><cites>FETCH-LOGICAL-c363t-8cec61cd513d801abe1b858bf1091a2e87dfbec0449222ec127c005d7201cb0c3</cites><orcidid>0000-0001-8077-9680</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10346-022-02012-4$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10346-022-02012-4$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Fu, Sheng</creatorcontrib><creatorcontrib>de Jong, Steven M.</creatorcontrib><creatorcontrib>Deijns, Axel</creatorcontrib><creatorcontrib>Geertsema, Marten</creatorcontrib><creatorcontrib>de Haas, Tjalling</creatorcontrib><title>The SWADE model for landslide dating in time series of optical satellite imagery</title><title>Landslides</title><addtitle>Landslides</addtitle><description>Landslides are destructive natural hazards that cause substantial loss of life and impact on natural and built environments. Landslide frequencies are important inputs for hazard assessments. However, dating landslides in remote areas is often challenging. We propose a novel landslide dating technique based on Segmented WAvelet-DEnoising and stepwise linear fitting (SWADE), using the Landsat archive (1985–2017). SWADE employs the principle that vegetation is often removed by landsliding in vegetated areas, causing a temporal decrease in normalized difference vegetation index (NDVI). The applicability of SWADE and two previously published methods for landslide dating, harmonic modelling and LandTrendr, are evaluated using 66 known landslides in the Buckinghorse River area, northeastern British Columbia, Canada. SWADE identifies sudden changes of NDVI values in the time series and this may result in one or more probable landslide occurrence dates. The most-probable date range identified by SWADE detects 52% of the landslides within a maximum error of 1 year, and 62% of the landslides within a maximum error of 2 years. Comparatively, these numbers increase to 68% and 80% when including the two most-probable landslide date ranges, respectively. Harmonic modelling detects 79% of the landslides with a maximum error of 1 year, and 82% of the landslides with a maximum error of 2 years, but requires expert judgement and a well-developed seasonal vegetation cycle in contrast to SWADE. LandTrendr, originally developed for mapping deforestation, only detects 42% of landslides within a maximum error of 2 years. SWADE provides a promising fully automatic method for landslide dating, which can contribute to constructing landslide frequency-magnitude distributions in remote areas.</description><subject>Agriculture</subject><subject>Built environment</subject><subject>Civil Engineering</subject><subject>Dating</subject><subject>Dating techniques</subject><subject>Deforestation</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Geography</subject><subject>Hazard assessment</subject><subject>Landsat</subject><subject>Landsat satellites</subject><subject>Landslides</subject><subject>Landslides &amp; mudslides</subject><subject>Modelling</subject><subject>Natural Hazards</subject><subject>Normalized difference vegetative index</subject><subject>Original Paper</subject><subject>Remote regions</subject><subject>Remote sensing</subject><subject>Satellite imagery</subject><subject>Time series</subject><subject>Urban environments</subject><subject>Vegetation</subject><subject>Vegetation index</subject><issn>1612-510X</issn><issn>1612-5118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9UMtOwzAQtBBIlMIPcLLEObBr53msSnlIlUCiCG6WY2-KqzQpdjj07zEEwY3DaucwM7szjJ0jXCJAcRUQZJonIEQcQJGkB2yCeQQZYnn4i-H1mJ2EsAEQFchqwh5Xb8SfXmbXC77tLbW86T1vdWdD6yxxqwfXrbnr-OC2xAN5R4H3De93gzO65UEP1LZuIO62ek1-f8qOGt0GOvvZU_Z8s1jN75Llw-39fLZMjMzlkJSGTI7GZihtCahrwrrMyrpBqFALKgvb1GQgTSshBBkUhQHIbBHTmRqMnLKL0Xfn-_cPCoPa9B--iyeViIYppDJ6T5kYWcb3IXhq1M7HR_1eIaiv5tTYnIrNqe_mVBpFchSFSO5iqD_rf1SfEtlwEg</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Fu, Sheng</creator><creator>de Jong, Steven M.</creator><creator>Deijns, Axel</creator><creator>Geertsema, Marten</creator><creator>de Haas, Tjalling</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-8077-9680</orcidid></search><sort><creationdate>20230501</creationdate><title>The SWADE model for landslide dating in time series of optical satellite imagery</title><author>Fu, Sheng ; de Jong, Steven M. ; Deijns, Axel ; Geertsema, Marten ; de Haas, Tjalling</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-8cec61cd513d801abe1b858bf1091a2e87dfbec0449222ec127c005d7201cb0c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Agriculture</topic><topic>Built environment</topic><topic>Civil Engineering</topic><topic>Dating</topic><topic>Dating techniques</topic><topic>Deforestation</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Geography</topic><topic>Hazard assessment</topic><topic>Landsat</topic><topic>Landsat satellites</topic><topic>Landslides</topic><topic>Landslides &amp; mudslides</topic><topic>Modelling</topic><topic>Natural Hazards</topic><topic>Normalized difference vegetative index</topic><topic>Original Paper</topic><topic>Remote regions</topic><topic>Remote sensing</topic><topic>Satellite imagery</topic><topic>Time series</topic><topic>Urban environments</topic><topic>Vegetation</topic><topic>Vegetation index</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fu, Sheng</creatorcontrib><creatorcontrib>de Jong, Steven M.</creatorcontrib><creatorcontrib>Deijns, Axel</creatorcontrib><creatorcontrib>Geertsema, Marten</creatorcontrib><creatorcontrib>de Haas, Tjalling</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Landslides</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fu, Sheng</au><au>de Jong, Steven M.</au><au>Deijns, Axel</au><au>Geertsema, Marten</au><au>de Haas, Tjalling</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The SWADE model for landslide dating in time series of optical satellite imagery</atitle><jtitle>Landslides</jtitle><stitle>Landslides</stitle><date>2023-05-01</date><risdate>2023</risdate><volume>20</volume><issue>5</issue><spage>913</spage><epage>932</epage><pages>913-932</pages><issn>1612-510X</issn><eissn>1612-5118</eissn><abstract>Landslides are destructive natural hazards that cause substantial loss of life and impact on natural and built environments. Landslide frequencies are important inputs for hazard assessments. However, dating landslides in remote areas is often challenging. We propose a novel landslide dating technique based on Segmented WAvelet-DEnoising and stepwise linear fitting (SWADE), using the Landsat archive (1985–2017). SWADE employs the principle that vegetation is often removed by landsliding in vegetated areas, causing a temporal decrease in normalized difference vegetation index (NDVI). The applicability of SWADE and two previously published methods for landslide dating, harmonic modelling and LandTrendr, are evaluated using 66 known landslides in the Buckinghorse River area, northeastern British Columbia, Canada. SWADE identifies sudden changes of NDVI values in the time series and this may result in one or more probable landslide occurrence dates. The most-probable date range identified by SWADE detects 52% of the landslides within a maximum error of 1 year, and 62% of the landslides within a maximum error of 2 years. Comparatively, these numbers increase to 68% and 80% when including the two most-probable landslide date ranges, respectively. Harmonic modelling detects 79% of the landslides with a maximum error of 1 year, and 82% of the landslides with a maximum error of 2 years, but requires expert judgement and a well-developed seasonal vegetation cycle in contrast to SWADE. LandTrendr, originally developed for mapping deforestation, only detects 42% of landslides within a maximum error of 2 years. SWADE provides a promising fully automatic method for landslide dating, which can contribute to constructing landslide frequency-magnitude distributions in remote areas.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10346-022-02012-4</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0001-8077-9680</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1612-510X
ispartof Landslides, 2023-05, Vol.20 (5), p.913-932
issn 1612-510X
1612-5118
language eng
recordid cdi_proquest_journals_2801404351
source Springer Nature - Complete Springer Journals
subjects Agriculture
Built environment
Civil Engineering
Dating
Dating techniques
Deforestation
Earth and Environmental Science
Earth Sciences
Geography
Hazard assessment
Landsat
Landsat satellites
Landslides
Landslides & mudslides
Modelling
Natural Hazards
Normalized difference vegetative index
Original Paper
Remote regions
Remote sensing
Satellite imagery
Time series
Urban environments
Vegetation
Vegetation index
title The SWADE model for landslide dating in time series of optical satellite imagery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T06%3A47%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20SWADE%20model%20for%20landslide%20dating%20in%20time%20series%20of%20optical%20satellite%20imagery&rft.jtitle=Landslides&rft.au=Fu,%20Sheng&rft.date=2023-05-01&rft.volume=20&rft.issue=5&rft.spage=913&rft.epage=932&rft.pages=913-932&rft.issn=1612-510X&rft.eissn=1612-5118&rft_id=info:doi/10.1007/s10346-022-02012-4&rft_dat=%3Cproquest_cross%3E2801404351%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2801404351&rft_id=info:pmid/&rfr_iscdi=true