On modular cohomotopy groups

Let p be a prime and let π n ( X ; ℤ/ p r ) = [ X, M n (ℤ/ p r )] be the set of homotopy classes of based maps from CW-complexes X into the mod p r Moore spaces M n (ℤ/ p r ) of degree n , where ℤ/ p r denotes the integers mod p r . In this paper we firstly determine the modular cohomotopy groups π...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Israel journal of mathematics 2023-03, Vol.253 (2), p.887-915
Hauptverfasser: Li, Pengcheng, Pan, Jianzhong, Wu, Jie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 915
container_issue 2
container_start_page 887
container_title Israel journal of mathematics
container_volume 253
creator Li, Pengcheng
Pan, Jianzhong
Wu, Jie
description Let p be a prime and let π n ( X ; ℤ/ p r ) = [ X, M n (ℤ/ p r )] be the set of homotopy classes of based maps from CW-complexes X into the mod p r Moore spaces M n (ℤ/ p r ) of degree n , where ℤ/ p r denotes the integers mod p r . In this paper we firstly determine the modular cohomotopy groups π n ( X ; ℤ/ p r ) up to extensions by classical methods of primary cohomology operations and give conditions for the splitness of the extensions. Secondly we utilize some unstable homotopy theory of Moore spaces to study the modular cohomotopy groups; especially, the group π 3 ( X ; ℤ (2) ) with dim( X ) ≤ 6 is determined.
doi_str_mv 10.1007/s11856-022-2409-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2801278334</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2801278334</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-b2e057e94eb90cf5fb07d264cd0c039bfbb05f6f029653593bc564c3fd1e661e3</originalsourceid><addsrcrecordid>eNp1kEFLxDAQhYMoWFd_gOCh4Dk6M2nS9iiLrsLCXvQcmjRZXbZNTbaH_fd2qeDJ0xze-97Ax9gtwgMClI8JsZKKAxGnAmoOZyxDqSSvJOI5ywAIOWFJl-wqpR2AFCWKjN1t-rwL7bhvYm7DZ-jCIQzHfBvDOKRrduGbfXI3v3fBPl6e35evfL1ZvS2f1tySqg7ckANZurpwpgbrpTdQtqQK24IFURtvDEivPFCtpJC1MFZOqfAtOqXQiQW7n3eHGL5Hlw56F8bYTy81VYBUVkIUUwvnlo0hpei8HuJX18SjRtAnCXqWoCcJ-iRBw8TQzKSp229d_Fv-H_oB-ltdaA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2801278334</pqid></control><display><type>article</type><title>On modular cohomotopy groups</title><source>SpringerLink Journals - AutoHoldings</source><creator>Li, Pengcheng ; Pan, Jianzhong ; Wu, Jie</creator><creatorcontrib>Li, Pengcheng ; Pan, Jianzhong ; Wu, Jie</creatorcontrib><description>Let p be a prime and let π n ( X ; ℤ/ p r ) = [ X, M n (ℤ/ p r )] be the set of homotopy classes of based maps from CW-complexes X into the mod p r Moore spaces M n (ℤ/ p r ) of degree n , where ℤ/ p r denotes the integers mod p r . In this paper we firstly determine the modular cohomotopy groups π n ( X ; ℤ/ p r ) up to extensions by classical methods of primary cohomology operations and give conditions for the splitness of the extensions. Secondly we utilize some unstable homotopy theory of Moore spaces to study the modular cohomotopy groups; especially, the group π 3 ( X ; ℤ (2) ) with dim( X ) ≤ 6 is determined.</description><identifier>ISSN: 0021-2172</identifier><identifier>EISSN: 1565-8511</identifier><identifier>DOI: 10.1007/s11856-022-2409-0</identifier><language>eng</language><publisher>Jerusalem: The Hebrew University Magnes Press</publisher><subject>Algebra ; Analysis ; Applications of Mathematics ; Group Theory and Generalizations ; Homology ; Homotopy theory ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Theoretical</subject><ispartof>Israel journal of mathematics, 2023-03, Vol.253 (2), p.887-915</ispartof><rights>The Hebrew University of Jerusalem 2022</rights><rights>The Hebrew University of Jerusalem 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-b2e057e94eb90cf5fb07d264cd0c039bfbb05f6f029653593bc564c3fd1e661e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11856-022-2409-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11856-022-2409-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Li, Pengcheng</creatorcontrib><creatorcontrib>Pan, Jianzhong</creatorcontrib><creatorcontrib>Wu, Jie</creatorcontrib><title>On modular cohomotopy groups</title><title>Israel journal of mathematics</title><addtitle>Isr. J. Math</addtitle><description>Let p be a prime and let π n ( X ; ℤ/ p r ) = [ X, M n (ℤ/ p r )] be the set of homotopy classes of based maps from CW-complexes X into the mod p r Moore spaces M n (ℤ/ p r ) of degree n , where ℤ/ p r denotes the integers mod p r . In this paper we firstly determine the modular cohomotopy groups π n ( X ; ℤ/ p r ) up to extensions by classical methods of primary cohomology operations and give conditions for the splitness of the extensions. Secondly we utilize some unstable homotopy theory of Moore spaces to study the modular cohomotopy groups; especially, the group π 3 ( X ; ℤ (2) ) with dim( X ) ≤ 6 is determined.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Applications of Mathematics</subject><subject>Group Theory and Generalizations</subject><subject>Homology</subject><subject>Homotopy theory</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Theoretical</subject><issn>0021-2172</issn><issn>1565-8511</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLxDAQhYMoWFd_gOCh4Dk6M2nS9iiLrsLCXvQcmjRZXbZNTbaH_fd2qeDJ0xze-97Ax9gtwgMClI8JsZKKAxGnAmoOZyxDqSSvJOI5ywAIOWFJl-wqpR2AFCWKjN1t-rwL7bhvYm7DZ-jCIQzHfBvDOKRrduGbfXI3v3fBPl6e35evfL1ZvS2f1tySqg7ckANZurpwpgbrpTdQtqQK24IFURtvDEivPFCtpJC1MFZOqfAtOqXQiQW7n3eHGL5Hlw56F8bYTy81VYBUVkIUUwvnlo0hpei8HuJX18SjRtAnCXqWoCcJ-iRBw8TQzKSp229d_Fv-H_oB-ltdaA</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Li, Pengcheng</creator><creator>Pan, Jianzhong</creator><creator>Wu, Jie</creator><general>The Hebrew University Magnes Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230301</creationdate><title>On modular cohomotopy groups</title><author>Li, Pengcheng ; Pan, Jianzhong ; Wu, Jie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-b2e057e94eb90cf5fb07d264cd0c039bfbb05f6f029653593bc564c3fd1e661e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Applications of Mathematics</topic><topic>Group Theory and Generalizations</topic><topic>Homology</topic><topic>Homotopy theory</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Pengcheng</creatorcontrib><creatorcontrib>Pan, Jianzhong</creatorcontrib><creatorcontrib>Wu, Jie</creatorcontrib><collection>CrossRef</collection><jtitle>Israel journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Pengcheng</au><au>Pan, Jianzhong</au><au>Wu, Jie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On modular cohomotopy groups</atitle><jtitle>Israel journal of mathematics</jtitle><stitle>Isr. J. Math</stitle><date>2023-03-01</date><risdate>2023</risdate><volume>253</volume><issue>2</issue><spage>887</spage><epage>915</epage><pages>887-915</pages><issn>0021-2172</issn><eissn>1565-8511</eissn><abstract>Let p be a prime and let π n ( X ; ℤ/ p r ) = [ X, M n (ℤ/ p r )] be the set of homotopy classes of based maps from CW-complexes X into the mod p r Moore spaces M n (ℤ/ p r ) of degree n , where ℤ/ p r denotes the integers mod p r . In this paper we firstly determine the modular cohomotopy groups π n ( X ; ℤ/ p r ) up to extensions by classical methods of primary cohomology operations and give conditions for the splitness of the extensions. Secondly we utilize some unstable homotopy theory of Moore spaces to study the modular cohomotopy groups; especially, the group π 3 ( X ; ℤ (2) ) with dim( X ) ≤ 6 is determined.</abstract><cop>Jerusalem</cop><pub>The Hebrew University Magnes Press</pub><doi>10.1007/s11856-022-2409-0</doi><tpages>29</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-2172
ispartof Israel journal of mathematics, 2023-03, Vol.253 (2), p.887-915
issn 0021-2172
1565-8511
language eng
recordid cdi_proquest_journals_2801278334
source SpringerLink Journals - AutoHoldings
subjects Algebra
Analysis
Applications of Mathematics
Group Theory and Generalizations
Homology
Homotopy theory
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Theoretical
title On modular cohomotopy groups
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T01%3A05%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20modular%20cohomotopy%20groups&rft.jtitle=Israel%20journal%20of%20mathematics&rft.au=Li,%20Pengcheng&rft.date=2023-03-01&rft.volume=253&rft.issue=2&rft.spage=887&rft.epage=915&rft.pages=887-915&rft.issn=0021-2172&rft.eissn=1565-8511&rft_id=info:doi/10.1007/s11856-022-2409-0&rft_dat=%3Cproquest_cross%3E2801278334%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2801278334&rft_id=info:pmid/&rfr_iscdi=true