Computational Evolution Of New Catalysts For The Morita–Baylis–Hillman Reaction
We present a de novo discovery of an efficient catalyst of the Morita–Baylis–Hillman (MBH) reaction by searching chemical space for molecules that lower the estimated barrier of the rate‐determining step using a genetic algorithm (GA) starting from randomly selected tertiary amines. We identify 435...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie 2023-04, Vol.135 (18), p.n/a |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 18 |
container_start_page | |
container_title | Angewandte Chemie |
container_volume | 135 |
creator | Seumer, Julius Kirschner Solberg Hansen, Jonathan Brøndsted Nielsen, Mogens Jensen, Jan H. |
description | We present a de novo discovery of an efficient catalyst of the Morita–Baylis–Hillman (MBH) reaction by searching chemical space for molecules that lower the estimated barrier of the rate‐determining step using a genetic algorithm (GA) starting from randomly selected tertiary amines. We identify 435 candidates, virtually all of which contain an azetidine N as the catalytically active site, which is discovered by the GA. Two molecules are selected for further study based on their predicted synthetic accessibility and have predicted rate‐determining barriers that are lower than that of a known catalyst. Azetidines have not been used as catalysts for the MBH reaction. One suggested azetidine is successfully synthesized and showed an eightfold increase in activity over a commonly used catalyst. We believe this is the first experimentally verified de novo discovery of an efficient catalyst using a generative model.
An efficient catalyst of the Morita–Baylis–Hillman reaction was discovered using a graph‐based genetic algorithm. The catalytic activity was experimentally verified by a kinetic study and the newly discovered catalyst outcompetes a widely used catalyst for this reaction. |
doi_str_mv | 10.1002/ange.202218565 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2801032780</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2801032780</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2025-d54a320f0a50a84f5b1ad06a09838ea510e9dc54bca5996f8ed2a32fea1139c93</originalsourceid><addsrcrecordid>eNqFkD1PwzAQhi0EEqWwMkdiTjk7cWKPpeoHUmklKLN1TRxI5dbFTqiy8R_4h_wSEhXByHTv8D6nu4eQawoDCsBucfeiBwwYo4In_IT0KGc0jFKenpIeQByHgsXynFx4vwGAhKWyR55GdruvK6xKu0MTjN-tqbscLItgoQ_BCCs0ja98MLEuWL3q4MG6ssKvj887bEzp2zArjdniLnjUmHXsJTkr0Hh99TP75HkyXo1m4Xw5vR8N52HWXsnDnMcYMSgAOaCIC76mmEOCIEUkNHIKWuYZj9cZcimTQuictUChkdJIZjLqk5vj3r2zb7X2ldrY2rVveMUEUIhYKqBtDY6tzFnvnS7U3pVbdI2ioDpxqhOnfsW1gDwCh9Lo5p-2Gi6m4z_2G_p3c-E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2801032780</pqid></control><display><type>article</type><title>Computational Evolution Of New Catalysts For The Morita–Baylis–Hillman Reaction</title><source>Access via Wiley Online Library</source><creator>Seumer, Julius ; Kirschner Solberg Hansen, Jonathan ; Brøndsted Nielsen, Mogens ; Jensen, Jan H.</creator><creatorcontrib>Seumer, Julius ; Kirschner Solberg Hansen, Jonathan ; Brøndsted Nielsen, Mogens ; Jensen, Jan H.</creatorcontrib><description>We present a de novo discovery of an efficient catalyst of the Morita–Baylis–Hillman (MBH) reaction by searching chemical space for molecules that lower the estimated barrier of the rate‐determining step using a genetic algorithm (GA) starting from randomly selected tertiary amines. We identify 435 candidates, virtually all of which contain an azetidine N as the catalytically active site, which is discovered by the GA. Two molecules are selected for further study based on their predicted synthetic accessibility and have predicted rate‐determining barriers that are lower than that of a known catalyst. Azetidines have not been used as catalysts for the MBH reaction. One suggested azetidine is successfully synthesized and showed an eightfold increase in activity over a commonly used catalyst. We believe this is the first experimentally verified de novo discovery of an efficient catalyst using a generative model.
An efficient catalyst of the Morita–Baylis–Hillman reaction was discovered using a graph‐based genetic algorithm. The catalytic activity was experimentally verified by a kinetic study and the newly discovered catalyst outcompetes a widely used catalyst for this reaction.</description><identifier>ISSN: 0044-8249</identifier><identifier>EISSN: 1521-3757</identifier><identifier>DOI: 10.1002/ange.202218565</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Amines ; Catalysts ; Chemical Space ; Chemistry ; Computer applications ; De Novo Discovery ; Genetic Algorithm ; Genetic algorithms ; Organocatalysis</subject><ispartof>Angewandte Chemie, 2023-04, Vol.135 (18), p.n/a</ispartof><rights>2023 The Authors. Angewandte Chemie published by Wiley-VCH GmbH</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2025-d54a320f0a50a84f5b1ad06a09838ea510e9dc54bca5996f8ed2a32fea1139c93</citedby><cites>FETCH-LOGICAL-c2025-d54a320f0a50a84f5b1ad06a09838ea510e9dc54bca5996f8ed2a32fea1139c93</cites><orcidid>0000-0002-1465-1010</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fange.202218565$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fange.202218565$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,45579,45580</link.rule.ids></links><search><creatorcontrib>Seumer, Julius</creatorcontrib><creatorcontrib>Kirschner Solberg Hansen, Jonathan</creatorcontrib><creatorcontrib>Brøndsted Nielsen, Mogens</creatorcontrib><creatorcontrib>Jensen, Jan H.</creatorcontrib><title>Computational Evolution Of New Catalysts For The Morita–Baylis–Hillman Reaction</title><title>Angewandte Chemie</title><description>We present a de novo discovery of an efficient catalyst of the Morita–Baylis–Hillman (MBH) reaction by searching chemical space for molecules that lower the estimated barrier of the rate‐determining step using a genetic algorithm (GA) starting from randomly selected tertiary amines. We identify 435 candidates, virtually all of which contain an azetidine N as the catalytically active site, which is discovered by the GA. Two molecules are selected for further study based on their predicted synthetic accessibility and have predicted rate‐determining barriers that are lower than that of a known catalyst. Azetidines have not been used as catalysts for the MBH reaction. One suggested azetidine is successfully synthesized and showed an eightfold increase in activity over a commonly used catalyst. We believe this is the first experimentally verified de novo discovery of an efficient catalyst using a generative model.
An efficient catalyst of the Morita–Baylis–Hillman reaction was discovered using a graph‐based genetic algorithm. The catalytic activity was experimentally verified by a kinetic study and the newly discovered catalyst outcompetes a widely used catalyst for this reaction.</description><subject>Amines</subject><subject>Catalysts</subject><subject>Chemical Space</subject><subject>Chemistry</subject><subject>Computer applications</subject><subject>De Novo Discovery</subject><subject>Genetic Algorithm</subject><subject>Genetic algorithms</subject><subject>Organocatalysis</subject><issn>0044-8249</issn><issn>1521-3757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkD1PwzAQhi0EEqWwMkdiTjk7cWKPpeoHUmklKLN1TRxI5dbFTqiy8R_4h_wSEhXByHTv8D6nu4eQawoDCsBucfeiBwwYo4In_IT0KGc0jFKenpIeQByHgsXynFx4vwGAhKWyR55GdruvK6xKu0MTjN-tqbscLItgoQ_BCCs0ja98MLEuWL3q4MG6ssKvj887bEzp2zArjdniLnjUmHXsJTkr0Hh99TP75HkyXo1m4Xw5vR8N52HWXsnDnMcYMSgAOaCIC76mmEOCIEUkNHIKWuYZj9cZcimTQuictUChkdJIZjLqk5vj3r2zb7X2ldrY2rVveMUEUIhYKqBtDY6tzFnvnS7U3pVbdI2ioDpxqhOnfsW1gDwCh9Lo5p-2Gi6m4z_2G_p3c-E</recordid><startdate>20230424</startdate><enddate>20230424</enddate><creator>Seumer, Julius</creator><creator>Kirschner Solberg Hansen, Jonathan</creator><creator>Brøndsted Nielsen, Mogens</creator><creator>Jensen, Jan H.</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1465-1010</orcidid></search><sort><creationdate>20230424</creationdate><title>Computational Evolution Of New Catalysts For The Morita–Baylis–Hillman Reaction</title><author>Seumer, Julius ; Kirschner Solberg Hansen, Jonathan ; Brøndsted Nielsen, Mogens ; Jensen, Jan H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2025-d54a320f0a50a84f5b1ad06a09838ea510e9dc54bca5996f8ed2a32fea1139c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Amines</topic><topic>Catalysts</topic><topic>Chemical Space</topic><topic>Chemistry</topic><topic>Computer applications</topic><topic>De Novo Discovery</topic><topic>Genetic Algorithm</topic><topic>Genetic algorithms</topic><topic>Organocatalysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Seumer, Julius</creatorcontrib><creatorcontrib>Kirschner Solberg Hansen, Jonathan</creatorcontrib><creatorcontrib>Brøndsted Nielsen, Mogens</creatorcontrib><creatorcontrib>Jensen, Jan H.</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Angewandte Chemie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Seumer, Julius</au><au>Kirschner Solberg Hansen, Jonathan</au><au>Brøndsted Nielsen, Mogens</au><au>Jensen, Jan H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational Evolution Of New Catalysts For The Morita–Baylis–Hillman Reaction</atitle><jtitle>Angewandte Chemie</jtitle><date>2023-04-24</date><risdate>2023</risdate><volume>135</volume><issue>18</issue><epage>n/a</epage><issn>0044-8249</issn><eissn>1521-3757</eissn><abstract>We present a de novo discovery of an efficient catalyst of the Morita–Baylis–Hillman (MBH) reaction by searching chemical space for molecules that lower the estimated barrier of the rate‐determining step using a genetic algorithm (GA) starting from randomly selected tertiary amines. We identify 435 candidates, virtually all of which contain an azetidine N as the catalytically active site, which is discovered by the GA. Two molecules are selected for further study based on their predicted synthetic accessibility and have predicted rate‐determining barriers that are lower than that of a known catalyst. Azetidines have not been used as catalysts for the MBH reaction. One suggested azetidine is successfully synthesized and showed an eightfold increase in activity over a commonly used catalyst. We believe this is the first experimentally verified de novo discovery of an efficient catalyst using a generative model.
An efficient catalyst of the Morita–Baylis–Hillman reaction was discovered using a graph‐based genetic algorithm. The catalytic activity was experimentally verified by a kinetic study and the newly discovered catalyst outcompetes a widely used catalyst for this reaction.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ange.202218565</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-1465-1010</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0044-8249 |
ispartof | Angewandte Chemie, 2023-04, Vol.135 (18), p.n/a |
issn | 0044-8249 1521-3757 |
language | eng |
recordid | cdi_proquest_journals_2801032780 |
source | Access via Wiley Online Library |
subjects | Amines Catalysts Chemical Space Chemistry Computer applications De Novo Discovery Genetic Algorithm Genetic algorithms Organocatalysis |
title | Computational Evolution Of New Catalysts For The Morita–Baylis–Hillman Reaction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T13%3A27%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20Evolution%20Of%20New%20Catalysts%20For%20The%20Morita%E2%80%93Baylis%E2%80%93Hillman%20Reaction&rft.jtitle=Angewandte%20Chemie&rft.au=Seumer,%20Julius&rft.date=2023-04-24&rft.volume=135&rft.issue=18&rft.epage=n/a&rft.issn=0044-8249&rft.eissn=1521-3757&rft_id=info:doi/10.1002/ange.202218565&rft_dat=%3Cproquest_cross%3E2801032780%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2801032780&rft_id=info:pmid/&rfr_iscdi=true |