Optimal Identification of Unknown Parameters of Photovoltaic Models Using Dual-Population Gaining-Sharing Knowledge-Based Algorithm

Establishing an accurate equivalent model is a critical foundation to describe the energy conversion characteristics of a photovoltaic system, which can support the research of fault analysis, output power prediction, and performance analysis of the photovoltaic system. However, the widely used equi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of intelligent systems 2023, Vol.2023 (1)
Hauptverfasser: Xiong, Guojiang, Li, Lei, Mohamed, Ali Wagdy, Zhang, Jing, Zhang, Yao, Chen, Hao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title International journal of intelligent systems
container_volume 2023
creator Xiong, Guojiang
Li, Lei
Mohamed, Ali Wagdy
Zhang, Jing
Zhang, Yao
Chen, Hao
description Establishing an accurate equivalent model is a critical foundation to describe the energy conversion characteristics of a photovoltaic system, which can support the research of fault analysis, output power prediction, and performance analysis of the photovoltaic system. However, the widely used equivalent models are highly nonlinear and have many unknown parameters, making it difficult to identify these parameters accurately. Our previous work found that the gaining-sharing knowledge-based algorithm (GSK) shows promising performance in solving this problem. But its efficacy is not enough to achieve accurate parameters within a relatively limited computing resource. In this context, a dual-population GSK algorithm (DPGSK), which introduces a dual-population evolution strategy for more excellent searchability, is proposed to address this issue. In each iteration, the population splits equally and randomly into two subpopulations, one of which performs the junior gaining-sharing phase while the other performs the senior gaining-sharing phase. Then two updated subpopulations merge to form a new population. This allows for a grand reconciliation of convergence speed and population diversity, giving DPGSK powerful optimization performance. Afterward, DPGSK is applied to five photovoltaic models and validated for performance against other advanced metaheuristics. Besides, the impact of different components on DPGSK is also investigated. Results and comparisons show that either component is indispensable to DPGSK, and DPGSK strengthens the convergence and achieves accurate and reliable results, demonstrating its superiority over other algorithms in solving this studied problem.
doi_str_mv 10.1155/2023/3788453
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2800596101</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2800596101</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-e4d9276faf4ee7488ea96b88652088e984acac9f62ff1518443c17b9c32afb23</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqWw4wMssYRQP_JwlqVAqShqJVqJXeQmduOS2sF2qFjz4yRK16xGunN0R3MAuMboHuMoGhFE6IgmjIURPQEDjFIWYIw_TsEAtWHAcELPwYVzO4QwTsJoAH4XtVd7XsFZIbRXUuXcK6OhkXCtP7U5aLjklu-FF9Z16bI03nybynOVwzdTiMrBtVN6Cx8bXgVLUzdVXzHlSrd58F5y2-1f27ZKFFsRPHAnCjiutsYqX-4vwZnklRNXxzkEq-en1eQlmC-ms8l4HuSUJj4QYZGSJJZchkIkIWOCp_GGsTgi7XciZSHPeZ7KmEiJI8zCkOY42aQ5JVxuCB2Cm762tuarEc5nO9NY3V7MCEMoSmOMcEvd9VRujXNWyKy2rSD7k2GUdZazznJ2tNzitz1eKl3wg_qf_gOS2H5T</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2800596101</pqid></control><display><type>article</type><title>Optimal Identification of Unknown Parameters of Photovoltaic Models Using Dual-Population Gaining-Sharing Knowledge-Based Algorithm</title><source>ProQuest Central Essentials</source><source>ProQuest Central (Alumni Edition)</source><source>ProQuest Central Student</source><source>Wiley-Blackwell Open Access Titles</source><source>ProQuest Central Korea</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Xiong, Guojiang ; Li, Lei ; Mohamed, Ali Wagdy ; Zhang, Jing ; Zhang, Yao ; Chen, Hao</creator><contributor>Castillo, Oscar ; Oscar Castillo</contributor><creatorcontrib>Xiong, Guojiang ; Li, Lei ; Mohamed, Ali Wagdy ; Zhang, Jing ; Zhang, Yao ; Chen, Hao ; Castillo, Oscar ; Oscar Castillo</creatorcontrib><description>Establishing an accurate equivalent model is a critical foundation to describe the energy conversion characteristics of a photovoltaic system, which can support the research of fault analysis, output power prediction, and performance analysis of the photovoltaic system. However, the widely used equivalent models are highly nonlinear and have many unknown parameters, making it difficult to identify these parameters accurately. Our previous work found that the gaining-sharing knowledge-based algorithm (GSK) shows promising performance in solving this problem. But its efficacy is not enough to achieve accurate parameters within a relatively limited computing resource. In this context, a dual-population GSK algorithm (DPGSK), which introduces a dual-population evolution strategy for more excellent searchability, is proposed to address this issue. In each iteration, the population splits equally and randomly into two subpopulations, one of which performs the junior gaining-sharing phase while the other performs the senior gaining-sharing phase. Then two updated subpopulations merge to form a new population. This allows for a grand reconciliation of convergence speed and population diversity, giving DPGSK powerful optimization performance. Afterward, DPGSK is applied to five photovoltaic models and validated for performance against other advanced metaheuristics. Besides, the impact of different components on DPGSK is also investigated. Results and comparisons show that either component is indispensable to DPGSK, and DPGSK strengthens the convergence and achieves accurate and reliable results, demonstrating its superiority over other algorithms in solving this studied problem.</description><identifier>ISSN: 0884-8173</identifier><identifier>EISSN: 1098-111X</identifier><identifier>DOI: 10.1155/2023/3788453</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Accuracy ; Algorithms ; Alternative energy sources ; Climate change ; Convergence ; Efficiency ; Energy conversion ; Energy resources ; Equivalence ; Exploitation ; Heuristic methods ; Intelligent systems ; Iterative methods ; Knowledge sharing ; Mathematical models ; Methods ; Numerical analysis ; Optimization ; Parameter identification ; Photovoltaic cells</subject><ispartof>International journal of intelligent systems, 2023, Vol.2023 (1)</ispartof><rights>Copyright © 2023 Guojiang Xiong et al.</rights><rights>Copyright © 2023 Guojiang Xiong et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-e4d9276faf4ee7488ea96b88652088e984acac9f62ff1518443c17b9c32afb23</citedby><cites>FETCH-LOGICAL-c337t-e4d9276faf4ee7488ea96b88652088e984acac9f62ff1518443c17b9c32afb23</cites><orcidid>0000-0002-5895-2632 ; 0000-0002-4883-5168 ; 0000-0002-8913-7315</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2800596101/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2800596101?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,4010,21369,21370,21371,21372,23237,27904,27905,27906,33511,33684,33725,33986,34295,43640,43768,43786,43934,44048,64364,64368,72218,73853,74032,74051,74222,74339</link.rule.ids></links><search><contributor>Castillo, Oscar</contributor><contributor>Oscar Castillo</contributor><creatorcontrib>Xiong, Guojiang</creatorcontrib><creatorcontrib>Li, Lei</creatorcontrib><creatorcontrib>Mohamed, Ali Wagdy</creatorcontrib><creatorcontrib>Zhang, Jing</creatorcontrib><creatorcontrib>Zhang, Yao</creatorcontrib><creatorcontrib>Chen, Hao</creatorcontrib><title>Optimal Identification of Unknown Parameters of Photovoltaic Models Using Dual-Population Gaining-Sharing Knowledge-Based Algorithm</title><title>International journal of intelligent systems</title><description>Establishing an accurate equivalent model is a critical foundation to describe the energy conversion characteristics of a photovoltaic system, which can support the research of fault analysis, output power prediction, and performance analysis of the photovoltaic system. However, the widely used equivalent models are highly nonlinear and have many unknown parameters, making it difficult to identify these parameters accurately. Our previous work found that the gaining-sharing knowledge-based algorithm (GSK) shows promising performance in solving this problem. But its efficacy is not enough to achieve accurate parameters within a relatively limited computing resource. In this context, a dual-population GSK algorithm (DPGSK), which introduces a dual-population evolution strategy for more excellent searchability, is proposed to address this issue. In each iteration, the population splits equally and randomly into two subpopulations, one of which performs the junior gaining-sharing phase while the other performs the senior gaining-sharing phase. Then two updated subpopulations merge to form a new population. This allows for a grand reconciliation of convergence speed and population diversity, giving DPGSK powerful optimization performance. Afterward, DPGSK is applied to five photovoltaic models and validated for performance against other advanced metaheuristics. Besides, the impact of different components on DPGSK is also investigated. Results and comparisons show that either component is indispensable to DPGSK, and DPGSK strengthens the convergence and achieves accurate and reliable results, demonstrating its superiority over other algorithms in solving this studied problem.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Alternative energy sources</subject><subject>Climate change</subject><subject>Convergence</subject><subject>Efficiency</subject><subject>Energy conversion</subject><subject>Energy resources</subject><subject>Equivalence</subject><subject>Exploitation</subject><subject>Heuristic methods</subject><subject>Intelligent systems</subject><subject>Iterative methods</subject><subject>Knowledge sharing</subject><subject>Mathematical models</subject><subject>Methods</subject><subject>Numerical analysis</subject><subject>Optimization</subject><subject>Parameter identification</subject><subject>Photovoltaic cells</subject><issn>0884-8173</issn><issn>1098-111X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kMtOwzAQRS0EEqWw4wMssYRQP_JwlqVAqShqJVqJXeQmduOS2sF2qFjz4yRK16xGunN0R3MAuMboHuMoGhFE6IgmjIURPQEDjFIWYIw_TsEAtWHAcELPwYVzO4QwTsJoAH4XtVd7XsFZIbRXUuXcK6OhkXCtP7U5aLjklu-FF9Z16bI03nybynOVwzdTiMrBtVN6Cx8bXgVLUzdVXzHlSrd58F5y2-1f27ZKFFsRPHAnCjiutsYqX-4vwZnklRNXxzkEq-en1eQlmC-ms8l4HuSUJj4QYZGSJJZchkIkIWOCp_GGsTgi7XciZSHPeZ7KmEiJI8zCkOY42aQ5JVxuCB2Cm762tuarEc5nO9NY3V7MCEMoSmOMcEvd9VRujXNWyKy2rSD7k2GUdZazznJ2tNzitz1eKl3wg_qf_gOS2H5T</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Xiong, Guojiang</creator><creator>Li, Lei</creator><creator>Mohamed, Ali Wagdy</creator><creator>Zhang, Jing</creator><creator>Zhang, Yao</creator><creator>Chen, Hao</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-5895-2632</orcidid><orcidid>https://orcid.org/0000-0002-4883-5168</orcidid><orcidid>https://orcid.org/0000-0002-8913-7315</orcidid></search><sort><creationdate>2023</creationdate><title>Optimal Identification of Unknown Parameters of Photovoltaic Models Using Dual-Population Gaining-Sharing Knowledge-Based Algorithm</title><author>Xiong, Guojiang ; Li, Lei ; Mohamed, Ali Wagdy ; Zhang, Jing ; Zhang, Yao ; Chen, Hao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-e4d9276faf4ee7488ea96b88652088e984acac9f62ff1518443c17b9c32afb23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Alternative energy sources</topic><topic>Climate change</topic><topic>Convergence</topic><topic>Efficiency</topic><topic>Energy conversion</topic><topic>Energy resources</topic><topic>Equivalence</topic><topic>Exploitation</topic><topic>Heuristic methods</topic><topic>Intelligent systems</topic><topic>Iterative methods</topic><topic>Knowledge sharing</topic><topic>Mathematical models</topic><topic>Methods</topic><topic>Numerical analysis</topic><topic>Optimization</topic><topic>Parameter identification</topic><topic>Photovoltaic cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiong, Guojiang</creatorcontrib><creatorcontrib>Li, Lei</creatorcontrib><creatorcontrib>Mohamed, Ali Wagdy</creatorcontrib><creatorcontrib>Zhang, Jing</creatorcontrib><creatorcontrib>Zhang, Yao</creatorcontrib><creatorcontrib>Chen, Hao</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>International journal of intelligent systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiong, Guojiang</au><au>Li, Lei</au><au>Mohamed, Ali Wagdy</au><au>Zhang, Jing</au><au>Zhang, Yao</au><au>Chen, Hao</au><au>Castillo, Oscar</au><au>Oscar Castillo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal Identification of Unknown Parameters of Photovoltaic Models Using Dual-Population Gaining-Sharing Knowledge-Based Algorithm</atitle><jtitle>International journal of intelligent systems</jtitle><date>2023</date><risdate>2023</risdate><volume>2023</volume><issue>1</issue><issn>0884-8173</issn><eissn>1098-111X</eissn><abstract>Establishing an accurate equivalent model is a critical foundation to describe the energy conversion characteristics of a photovoltaic system, which can support the research of fault analysis, output power prediction, and performance analysis of the photovoltaic system. However, the widely used equivalent models are highly nonlinear and have many unknown parameters, making it difficult to identify these parameters accurately. Our previous work found that the gaining-sharing knowledge-based algorithm (GSK) shows promising performance in solving this problem. But its efficacy is not enough to achieve accurate parameters within a relatively limited computing resource. In this context, a dual-population GSK algorithm (DPGSK), which introduces a dual-population evolution strategy for more excellent searchability, is proposed to address this issue. In each iteration, the population splits equally and randomly into two subpopulations, one of which performs the junior gaining-sharing phase while the other performs the senior gaining-sharing phase. Then two updated subpopulations merge to form a new population. This allows for a grand reconciliation of convergence speed and population diversity, giving DPGSK powerful optimization performance. Afterward, DPGSK is applied to five photovoltaic models and validated for performance against other advanced metaheuristics. Besides, the impact of different components on DPGSK is also investigated. Results and comparisons show that either component is indispensable to DPGSK, and DPGSK strengthens the convergence and achieves accurate and reliable results, demonstrating its superiority over other algorithms in solving this studied problem.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2023/3788453</doi><orcidid>https://orcid.org/0000-0002-5895-2632</orcidid><orcidid>https://orcid.org/0000-0002-4883-5168</orcidid><orcidid>https://orcid.org/0000-0002-8913-7315</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0884-8173
ispartof International journal of intelligent systems, 2023, Vol.2023 (1)
issn 0884-8173
1098-111X
language eng
recordid cdi_proquest_journals_2800596101
source ProQuest Central Essentials; ProQuest Central (Alumni Edition); ProQuest Central Student; Wiley-Blackwell Open Access Titles; ProQuest Central Korea; ProQuest Central UK/Ireland; ProQuest Central
subjects Accuracy
Algorithms
Alternative energy sources
Climate change
Convergence
Efficiency
Energy conversion
Energy resources
Equivalence
Exploitation
Heuristic methods
Intelligent systems
Iterative methods
Knowledge sharing
Mathematical models
Methods
Numerical analysis
Optimization
Parameter identification
Photovoltaic cells
title Optimal Identification of Unknown Parameters of Photovoltaic Models Using Dual-Population Gaining-Sharing Knowledge-Based Algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T00%3A05%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20Identification%20of%20Unknown%20Parameters%20of%20Photovoltaic%20Models%20Using%20Dual-Population%20Gaining-Sharing%20Knowledge-Based%20Algorithm&rft.jtitle=International%20journal%20of%20intelligent%20systems&rft.au=Xiong,%20Guojiang&rft.date=2023&rft.volume=2023&rft.issue=1&rft.issn=0884-8173&rft.eissn=1098-111X&rft_id=info:doi/10.1155/2023/3788453&rft_dat=%3Cproquest_cross%3E2800596101%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2800596101&rft_id=info:pmid/&rfr_iscdi=true