Current status, application, and challenges of the interpretability of generative adversarial network models

The generative adversarial network (GAN) is one of the most promising methods in the field of unsupervised learning. Model developers, users, and other interested people are highly concerned about the GAN mechanism where the generative model and the discriminative model learn from each other in a ga...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational intelligence 2023-04, Vol.39 (2), p.283-314
Hauptverfasser: Wang, Sulin, Zhao, Chengqiang, Huang, Lingling, Li, Yuanwei, Li, Ruochen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 314
container_issue 2
container_start_page 283
container_title Computational intelligence
container_volume 39
creator Wang, Sulin
Zhao, Chengqiang
Huang, Lingling
Li, Yuanwei
Li, Ruochen
description The generative adversarial network (GAN) is one of the most promising methods in the field of unsupervised learning. Model developers, users, and other interested people are highly concerned about the GAN mechanism where the generative model and the discriminative model learn from each other in a gameplay manner, which generates a causal relationship among output features, internal network structure, feature extraction process, and output results. Through the study of the interpretability of GANs, the validity, reliability, and robustness of the application of GANs can be verified, and the weaknesses of the GANs in specific applications can be diagnosed, which can provide support for designing better network structures. It can also improve security and reduce the decision‐making and prediction risks brought by GANs. In this article, the study of the interpretability of GANs is explored, and ways of the evaluation of the application effect of GAN interpretability techniques are analyzed. Besides, the effect of interpretable GANs in fields such as medical treatment and military is discussed, and current limitations and future challenges are demonstrated.
doi_str_mv 10.1111/coin.12564
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2800475929</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2800475929</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3014-c18e12be8f3ca05657084ccf2df0cd706bb4dd531f709becbf714fb21ddc3e4e3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKsXf0HAm7g12c1-HWXxo1DsRc8hm0za1DS7JtmW_nu31rNzGWZ43hl4ELqlZEbHepSdcTOa5gU7QxPKijKpCkbO0YRUKUvKOssv0VUIG0IIzVg1QbYZvAcXcYgiDuEBi763RopoOjcOTmG5FtaCW0HAncZxDdi4CL73EEVrrImH434FDvyY2gEWagc-CG-ExQ7ivvNfeNspsOEaXWhhA9z89Sn6fHn-aN6SxfJ13jwtEpkRyhJJK6BpC5XOpCB5kZekYlLqVGkiVUmKtmVK5RnVJalbkK0uKdNtSpWSGTDIpujudLf33fcAIfJNN3g3vuRpRQgr8zqtR-r-REnfheBB896brfAHTgk_2uRHm_zX5gjTE7w3Fg7_kLxZzt9PmR_Kqnpy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2800475929</pqid></control><display><type>article</type><title>Current status, application, and challenges of the interpretability of generative adversarial network models</title><source>Wiley Online Library Journals Frontfile Complete</source><source>EBSCOhost Business Source Complete</source><creator>Wang, Sulin ; Zhao, Chengqiang ; Huang, Lingling ; Li, Yuanwei ; Li, Ruochen</creator><creatorcontrib>Wang, Sulin ; Zhao, Chengqiang ; Huang, Lingling ; Li, Yuanwei ; Li, Ruochen</creatorcontrib><description>The generative adversarial network (GAN) is one of the most promising methods in the field of unsupervised learning. Model developers, users, and other interested people are highly concerned about the GAN mechanism where the generative model and the discriminative model learn from each other in a gameplay manner, which generates a causal relationship among output features, internal network structure, feature extraction process, and output results. Through the study of the interpretability of GANs, the validity, reliability, and robustness of the application of GANs can be verified, and the weaknesses of the GANs in specific applications can be diagnosed, which can provide support for designing better network structures. It can also improve security and reduce the decision‐making and prediction risks brought by GANs. In this article, the study of the interpretability of GANs is explored, and ways of the evaluation of the application effect of GAN interpretability techniques are analyzed. Besides, the effect of interpretable GANs in fields such as medical treatment and military is discussed, and current limitations and future challenges are demonstrated.</description><identifier>ISSN: 0824-7935</identifier><identifier>EISSN: 1467-8640</identifier><identifier>DOI: 10.1111/coin.12564</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>causal interpretation ; Feature extraction ; GAN ; Generative adversarial networks ; interpretable networks ; Machine learning ; network interpretability ; Unsupervised learning</subject><ispartof>Computational intelligence, 2023-04, Vol.39 (2), p.283-314</ispartof><rights>2022 Wiley Periodicals LLC.</rights><rights>2023 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3014-c18e12be8f3ca05657084ccf2df0cd706bb4dd531f709becbf714fb21ddc3e4e3</citedby><cites>FETCH-LOGICAL-c3014-c18e12be8f3ca05657084ccf2df0cd706bb4dd531f709becbf714fb21ddc3e4e3</cites><orcidid>0000-0003-2768-8821</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fcoin.12564$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fcoin.12564$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Wang, Sulin</creatorcontrib><creatorcontrib>Zhao, Chengqiang</creatorcontrib><creatorcontrib>Huang, Lingling</creatorcontrib><creatorcontrib>Li, Yuanwei</creatorcontrib><creatorcontrib>Li, Ruochen</creatorcontrib><title>Current status, application, and challenges of the interpretability of generative adversarial network models</title><title>Computational intelligence</title><description>The generative adversarial network (GAN) is one of the most promising methods in the field of unsupervised learning. Model developers, users, and other interested people are highly concerned about the GAN mechanism where the generative model and the discriminative model learn from each other in a gameplay manner, which generates a causal relationship among output features, internal network structure, feature extraction process, and output results. Through the study of the interpretability of GANs, the validity, reliability, and robustness of the application of GANs can be verified, and the weaknesses of the GANs in specific applications can be diagnosed, which can provide support for designing better network structures. It can also improve security and reduce the decision‐making and prediction risks brought by GANs. In this article, the study of the interpretability of GANs is explored, and ways of the evaluation of the application effect of GAN interpretability techniques are analyzed. Besides, the effect of interpretable GANs in fields such as medical treatment and military is discussed, and current limitations and future challenges are demonstrated.</description><subject>causal interpretation</subject><subject>Feature extraction</subject><subject>GAN</subject><subject>Generative adversarial networks</subject><subject>interpretable networks</subject><subject>Machine learning</subject><subject>network interpretability</subject><subject>Unsupervised learning</subject><issn>0824-7935</issn><issn>1467-8640</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKsXf0HAm7g12c1-HWXxo1DsRc8hm0za1DS7JtmW_nu31rNzGWZ43hl4ELqlZEbHepSdcTOa5gU7QxPKijKpCkbO0YRUKUvKOssv0VUIG0IIzVg1QbYZvAcXcYgiDuEBi763RopoOjcOTmG5FtaCW0HAncZxDdi4CL73EEVrrImH434FDvyY2gEWagc-CG-ExQ7ivvNfeNspsOEaXWhhA9z89Sn6fHn-aN6SxfJ13jwtEpkRyhJJK6BpC5XOpCB5kZekYlLqVGkiVUmKtmVK5RnVJalbkK0uKdNtSpWSGTDIpujudLf33fcAIfJNN3g3vuRpRQgr8zqtR-r-REnfheBB896brfAHTgk_2uRHm_zX5gjTE7w3Fg7_kLxZzt9PmR_Kqnpy</recordid><startdate>202304</startdate><enddate>202304</enddate><creator>Wang, Sulin</creator><creator>Zhao, Chengqiang</creator><creator>Huang, Lingling</creator><creator>Li, Yuanwei</creator><creator>Li, Ruochen</creator><general>John Wiley &amp; Sons, Inc</general><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-2768-8821</orcidid></search><sort><creationdate>202304</creationdate><title>Current status, application, and challenges of the interpretability of generative adversarial network models</title><author>Wang, Sulin ; Zhao, Chengqiang ; Huang, Lingling ; Li, Yuanwei ; Li, Ruochen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3014-c18e12be8f3ca05657084ccf2df0cd706bb4dd531f709becbf714fb21ddc3e4e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>causal interpretation</topic><topic>Feature extraction</topic><topic>GAN</topic><topic>Generative adversarial networks</topic><topic>interpretable networks</topic><topic>Machine learning</topic><topic>network interpretability</topic><topic>Unsupervised learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Sulin</creatorcontrib><creatorcontrib>Zhao, Chengqiang</creatorcontrib><creatorcontrib>Huang, Lingling</creatorcontrib><creatorcontrib>Li, Yuanwei</creatorcontrib><creatorcontrib>Li, Ruochen</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computational intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Sulin</au><au>Zhao, Chengqiang</au><au>Huang, Lingling</au><au>Li, Yuanwei</au><au>Li, Ruochen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Current status, application, and challenges of the interpretability of generative adversarial network models</atitle><jtitle>Computational intelligence</jtitle><date>2023-04</date><risdate>2023</risdate><volume>39</volume><issue>2</issue><spage>283</spage><epage>314</epage><pages>283-314</pages><issn>0824-7935</issn><eissn>1467-8640</eissn><abstract>The generative adversarial network (GAN) is one of the most promising methods in the field of unsupervised learning. Model developers, users, and other interested people are highly concerned about the GAN mechanism where the generative model and the discriminative model learn from each other in a gameplay manner, which generates a causal relationship among output features, internal network structure, feature extraction process, and output results. Through the study of the interpretability of GANs, the validity, reliability, and robustness of the application of GANs can be verified, and the weaknesses of the GANs in specific applications can be diagnosed, which can provide support for designing better network structures. It can also improve security and reduce the decision‐making and prediction risks brought by GANs. In this article, the study of the interpretability of GANs is explored, and ways of the evaluation of the application effect of GAN interpretability techniques are analyzed. Besides, the effect of interpretable GANs in fields such as medical treatment and military is discussed, and current limitations and future challenges are demonstrated.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1111/coin.12564</doi><tpages>32</tpages><orcidid>https://orcid.org/0000-0003-2768-8821</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0824-7935
ispartof Computational intelligence, 2023-04, Vol.39 (2), p.283-314
issn 0824-7935
1467-8640
language eng
recordid cdi_proquest_journals_2800475929
source Wiley Online Library Journals Frontfile Complete; EBSCOhost Business Source Complete
subjects causal interpretation
Feature extraction
GAN
Generative adversarial networks
interpretable networks
Machine learning
network interpretability
Unsupervised learning
title Current status, application, and challenges of the interpretability of generative adversarial network models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T08%3A15%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Current%20status,%20application,%20and%20challenges%20of%20the%20interpretability%20of%20generative%20adversarial%20network%20models&rft.jtitle=Computational%20intelligence&rft.au=Wang,%20Sulin&rft.date=2023-04&rft.volume=39&rft.issue=2&rft.spage=283&rft.epage=314&rft.pages=283-314&rft.issn=0824-7935&rft.eissn=1467-8640&rft_id=info:doi/10.1111/coin.12564&rft_dat=%3Cproquest_cross%3E2800475929%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2800475929&rft_id=info:pmid/&rfr_iscdi=true