Current status, application, and challenges of the interpretability of generative adversarial network models
The generative adversarial network (GAN) is one of the most promising methods in the field of unsupervised learning. Model developers, users, and other interested people are highly concerned about the GAN mechanism where the generative model and the discriminative model learn from each other in a ga...
Gespeichert in:
Veröffentlicht in: | Computational intelligence 2023-04, Vol.39 (2), p.283-314 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 314 |
---|---|
container_issue | 2 |
container_start_page | 283 |
container_title | Computational intelligence |
container_volume | 39 |
creator | Wang, Sulin Zhao, Chengqiang Huang, Lingling Li, Yuanwei Li, Ruochen |
description | The generative adversarial network (GAN) is one of the most promising methods in the field of unsupervised learning. Model developers, users, and other interested people are highly concerned about the GAN mechanism where the generative model and the discriminative model learn from each other in a gameplay manner, which generates a causal relationship among output features, internal network structure, feature extraction process, and output results. Through the study of the interpretability of GANs, the validity, reliability, and robustness of the application of GANs can be verified, and the weaknesses of the GANs in specific applications can be diagnosed, which can provide support for designing better network structures. It can also improve security and reduce the decision‐making and prediction risks brought by GANs. In this article, the study of the interpretability of GANs is explored, and ways of the evaluation of the application effect of GAN interpretability techniques are analyzed. Besides, the effect of interpretable GANs in fields such as medical treatment and military is discussed, and current limitations and future challenges are demonstrated. |
doi_str_mv | 10.1111/coin.12564 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2800475929</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2800475929</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3014-c18e12be8f3ca05657084ccf2df0cd706bb4dd531f709becbf714fb21ddc3e4e3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKsXf0HAm7g12c1-HWXxo1DsRc8hm0za1DS7JtmW_nu31rNzGWZ43hl4ELqlZEbHepSdcTOa5gU7QxPKijKpCkbO0YRUKUvKOssv0VUIG0IIzVg1QbYZvAcXcYgiDuEBi763RopoOjcOTmG5FtaCW0HAncZxDdi4CL73EEVrrImH434FDvyY2gEWagc-CG-ExQ7ivvNfeNspsOEaXWhhA9z89Sn6fHn-aN6SxfJ13jwtEpkRyhJJK6BpC5XOpCB5kZekYlLqVGkiVUmKtmVK5RnVJalbkK0uKdNtSpWSGTDIpujudLf33fcAIfJNN3g3vuRpRQgr8zqtR-r-REnfheBB896brfAHTgk_2uRHm_zX5gjTE7w3Fg7_kLxZzt9PmR_Kqnpy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2800475929</pqid></control><display><type>article</type><title>Current status, application, and challenges of the interpretability of generative adversarial network models</title><source>Wiley Online Library Journals Frontfile Complete</source><source>EBSCOhost Business Source Complete</source><creator>Wang, Sulin ; Zhao, Chengqiang ; Huang, Lingling ; Li, Yuanwei ; Li, Ruochen</creator><creatorcontrib>Wang, Sulin ; Zhao, Chengqiang ; Huang, Lingling ; Li, Yuanwei ; Li, Ruochen</creatorcontrib><description>The generative adversarial network (GAN) is one of the most promising methods in the field of unsupervised learning. Model developers, users, and other interested people are highly concerned about the GAN mechanism where the generative model and the discriminative model learn from each other in a gameplay manner, which generates a causal relationship among output features, internal network structure, feature extraction process, and output results. Through the study of the interpretability of GANs, the validity, reliability, and robustness of the application of GANs can be verified, and the weaknesses of the GANs in specific applications can be diagnosed, which can provide support for designing better network structures. It can also improve security and reduce the decision‐making and prediction risks brought by GANs. In this article, the study of the interpretability of GANs is explored, and ways of the evaluation of the application effect of GAN interpretability techniques are analyzed. Besides, the effect of interpretable GANs in fields such as medical treatment and military is discussed, and current limitations and future challenges are demonstrated.</description><identifier>ISSN: 0824-7935</identifier><identifier>EISSN: 1467-8640</identifier><identifier>DOI: 10.1111/coin.12564</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>causal interpretation ; Feature extraction ; GAN ; Generative adversarial networks ; interpretable networks ; Machine learning ; network interpretability ; Unsupervised learning</subject><ispartof>Computational intelligence, 2023-04, Vol.39 (2), p.283-314</ispartof><rights>2022 Wiley Periodicals LLC.</rights><rights>2023 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3014-c18e12be8f3ca05657084ccf2df0cd706bb4dd531f709becbf714fb21ddc3e4e3</citedby><cites>FETCH-LOGICAL-c3014-c18e12be8f3ca05657084ccf2df0cd706bb4dd531f709becbf714fb21ddc3e4e3</cites><orcidid>0000-0003-2768-8821</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fcoin.12564$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fcoin.12564$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Wang, Sulin</creatorcontrib><creatorcontrib>Zhao, Chengqiang</creatorcontrib><creatorcontrib>Huang, Lingling</creatorcontrib><creatorcontrib>Li, Yuanwei</creatorcontrib><creatorcontrib>Li, Ruochen</creatorcontrib><title>Current status, application, and challenges of the interpretability of generative adversarial network models</title><title>Computational intelligence</title><description>The generative adversarial network (GAN) is one of the most promising methods in the field of unsupervised learning. Model developers, users, and other interested people are highly concerned about the GAN mechanism where the generative model and the discriminative model learn from each other in a gameplay manner, which generates a causal relationship among output features, internal network structure, feature extraction process, and output results. Through the study of the interpretability of GANs, the validity, reliability, and robustness of the application of GANs can be verified, and the weaknesses of the GANs in specific applications can be diagnosed, which can provide support for designing better network structures. It can also improve security and reduce the decision‐making and prediction risks brought by GANs. In this article, the study of the interpretability of GANs is explored, and ways of the evaluation of the application effect of GAN interpretability techniques are analyzed. Besides, the effect of interpretable GANs in fields such as medical treatment and military is discussed, and current limitations and future challenges are demonstrated.</description><subject>causal interpretation</subject><subject>Feature extraction</subject><subject>GAN</subject><subject>Generative adversarial networks</subject><subject>interpretable networks</subject><subject>Machine learning</subject><subject>network interpretability</subject><subject>Unsupervised learning</subject><issn>0824-7935</issn><issn>1467-8640</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKsXf0HAm7g12c1-HWXxo1DsRc8hm0za1DS7JtmW_nu31rNzGWZ43hl4ELqlZEbHepSdcTOa5gU7QxPKijKpCkbO0YRUKUvKOssv0VUIG0IIzVg1QbYZvAcXcYgiDuEBi763RopoOjcOTmG5FtaCW0HAncZxDdi4CL73EEVrrImH434FDvyY2gEWagc-CG-ExQ7ivvNfeNspsOEaXWhhA9z89Sn6fHn-aN6SxfJ13jwtEpkRyhJJK6BpC5XOpCB5kZekYlLqVGkiVUmKtmVK5RnVJalbkK0uKdNtSpWSGTDIpujudLf33fcAIfJNN3g3vuRpRQgr8zqtR-r-REnfheBB896brfAHTgk_2uRHm_zX5gjTE7w3Fg7_kLxZzt9PmR_Kqnpy</recordid><startdate>202304</startdate><enddate>202304</enddate><creator>Wang, Sulin</creator><creator>Zhao, Chengqiang</creator><creator>Huang, Lingling</creator><creator>Li, Yuanwei</creator><creator>Li, Ruochen</creator><general>John Wiley & Sons, Inc</general><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-2768-8821</orcidid></search><sort><creationdate>202304</creationdate><title>Current status, application, and challenges of the interpretability of generative adversarial network models</title><author>Wang, Sulin ; Zhao, Chengqiang ; Huang, Lingling ; Li, Yuanwei ; Li, Ruochen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3014-c18e12be8f3ca05657084ccf2df0cd706bb4dd531f709becbf714fb21ddc3e4e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>causal interpretation</topic><topic>Feature extraction</topic><topic>GAN</topic><topic>Generative adversarial networks</topic><topic>interpretable networks</topic><topic>Machine learning</topic><topic>network interpretability</topic><topic>Unsupervised learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Sulin</creatorcontrib><creatorcontrib>Zhao, Chengqiang</creatorcontrib><creatorcontrib>Huang, Lingling</creatorcontrib><creatorcontrib>Li, Yuanwei</creatorcontrib><creatorcontrib>Li, Ruochen</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computational intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Sulin</au><au>Zhao, Chengqiang</au><au>Huang, Lingling</au><au>Li, Yuanwei</au><au>Li, Ruochen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Current status, application, and challenges of the interpretability of generative adversarial network models</atitle><jtitle>Computational intelligence</jtitle><date>2023-04</date><risdate>2023</risdate><volume>39</volume><issue>2</issue><spage>283</spage><epage>314</epage><pages>283-314</pages><issn>0824-7935</issn><eissn>1467-8640</eissn><abstract>The generative adversarial network (GAN) is one of the most promising methods in the field of unsupervised learning. Model developers, users, and other interested people are highly concerned about the GAN mechanism where the generative model and the discriminative model learn from each other in a gameplay manner, which generates a causal relationship among output features, internal network structure, feature extraction process, and output results. Through the study of the interpretability of GANs, the validity, reliability, and robustness of the application of GANs can be verified, and the weaknesses of the GANs in specific applications can be diagnosed, which can provide support for designing better network structures. It can also improve security and reduce the decision‐making and prediction risks brought by GANs. In this article, the study of the interpretability of GANs is explored, and ways of the evaluation of the application effect of GAN interpretability techniques are analyzed. Besides, the effect of interpretable GANs in fields such as medical treatment and military is discussed, and current limitations and future challenges are demonstrated.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1111/coin.12564</doi><tpages>32</tpages><orcidid>https://orcid.org/0000-0003-2768-8821</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0824-7935 |
ispartof | Computational intelligence, 2023-04, Vol.39 (2), p.283-314 |
issn | 0824-7935 1467-8640 |
language | eng |
recordid | cdi_proquest_journals_2800475929 |
source | Wiley Online Library Journals Frontfile Complete; EBSCOhost Business Source Complete |
subjects | causal interpretation Feature extraction GAN Generative adversarial networks interpretable networks Machine learning network interpretability Unsupervised learning |
title | Current status, application, and challenges of the interpretability of generative adversarial network models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T08%3A15%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Current%20status,%20application,%20and%20challenges%20of%20the%20interpretability%20of%20generative%20adversarial%20network%20models&rft.jtitle=Computational%20intelligence&rft.au=Wang,%20Sulin&rft.date=2023-04&rft.volume=39&rft.issue=2&rft.spage=283&rft.epage=314&rft.pages=283-314&rft.issn=0824-7935&rft.eissn=1467-8640&rft_id=info:doi/10.1111/coin.12564&rft_dat=%3Cproquest_cross%3E2800475929%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2800475929&rft_id=info:pmid/&rfr_iscdi=true |