A multi‐step finite‐state automaton for arbitrarily deterministic Tsetlin Machine learning

Due to the high arithmetic complexity and scalability challenges of deep learning, there is a critical need to shift research focus towards energy efficiency. Tsetlin Machines (TMs) are a recent approach to machine learning (ML) that has demonstrated significantly reduced energy compared to neural n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Expert systems 2023-05, Vol.40 (4), p.n/a
Hauptverfasser: Abeyrathna, Kuruge Darshana, Granmo, Ole‐Christoffer, Shafik, Rishad, Jiao, Lei, Wheeldon, Adrian, Yakovlev, Alex, Lei, Jie, Goodwin, Morten
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 4
container_start_page
container_title Expert systems
container_volume 40
creator Abeyrathna, Kuruge Darshana
Granmo, Ole‐Christoffer
Shafik, Rishad
Jiao, Lei
Wheeldon, Adrian
Yakovlev, Alex
Lei, Jie
Goodwin, Morten
description Due to the high arithmetic complexity and scalability challenges of deep learning, there is a critical need to shift research focus towards energy efficiency. Tsetlin Machines (TMs) are a recent approach to machine learning (ML) that has demonstrated significantly reduced energy compared to neural networks alike, while providing comparable accuracy on several benchmarks. However, TMs rely heavily on energy‐costly random number generation to stochastically guide a team of Tsetlin Automata (TA) in TM learning. In this paper, we propose a novel finite‐state learning automaton that can replace the TA in the TM, for increased determinism. The new automaton uses multi‐step deterministic state jumps to reinforce sub‐patterns, without resorting to randomization. A determinism parameter d finely controls trading off the energy consumption of random number generation, against randomization for increased accuracy. Randomization is controlled by flipping a coin before every d'th state jump, ignoring the state jump on tails. For example, d=1 makes every update random and d=∞ makes the automaton completely deterministic. Both theoretically and empirically, we establish that the proposed automaton converges to the optimal action almost surely. Further, used together with the TM, only substantial degrees of determinism reduce accuracy. Energy‐wise, random number generation constitutes switching energy consumption of the TM, saving up to 11 mW power for larger datasets with high d values. Our new learning automaton approach thus facilitates low‐energy ML.
doi_str_mv 10.1111/exsy.12836
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2800399202</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2800399202</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2966-d458f08c6e2a445c56130af3eaa224c5788ffbd4d1d80eb089bd4a853607c3833</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKsbnyDgTmjNbTKZZSneoOLCCroxpJlEU-ZSkww6Ox_BZ_RJTDuuPZvDD9-58AFwitEUp7own6GfYiIo3wMjzLiYIFqwfTBChPMJywk6BEchrBFCOM_5CLzMYN1V0f18fYdoNtC6xkWzSyoaqLrY1iq2DbSth8qvXPTKu6qHpYnG14kO0Wm4DCZWroF3Sr-5xsDKKN-45vUYHFhVBXPy18fg8epyOb-ZLO6vb-ezxUSTIj1WskxYJDQ3RDGW6YxjipSlRilCmM5yIaxdlazEpUBmhUSRghIZ5SjXVFA6BmfD3o1v3zsToly3nW_SSUkESg4KgkiizgdK-zYEb6zceFcr30uM5Naf3PqTO38JxgP84SrT_0PKy6eH52HmFwxldl0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2800399202</pqid></control><display><type>article</type><title>A multi‐step finite‐state automaton for arbitrarily deterministic Tsetlin Machine learning</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Business Source Complete</source><creator>Abeyrathna, Kuruge Darshana ; Granmo, Ole‐Christoffer ; Shafik, Rishad ; Jiao, Lei ; Wheeldon, Adrian ; Yakovlev, Alex ; Lei, Jie ; Goodwin, Morten</creator><creatorcontrib>Abeyrathna, Kuruge Darshana ; Granmo, Ole‐Christoffer ; Shafik, Rishad ; Jiao, Lei ; Wheeldon, Adrian ; Yakovlev, Alex ; Lei, Jie ; Goodwin, Morten</creatorcontrib><description>Due to the high arithmetic complexity and scalability challenges of deep learning, there is a critical need to shift research focus towards energy efficiency. Tsetlin Machines (TMs) are a recent approach to machine learning (ML) that has demonstrated significantly reduced energy compared to neural networks alike, while providing comparable accuracy on several benchmarks. However, TMs rely heavily on energy‐costly random number generation to stochastically guide a team of Tsetlin Automata (TA) in TM learning. In this paper, we propose a novel finite‐state learning automaton that can replace the TA in the TM, for increased determinism. The new automaton uses multi‐step deterministic state jumps to reinforce sub‐patterns, without resorting to randomization. A determinism parameter d finely controls trading off the energy consumption of random number generation, against randomization for increased accuracy. Randomization is controlled by flipping a coin before every d'th state jump, ignoring the state jump on tails. For example, d=1 makes every update random and d=∞ makes the automaton completely deterministic. Both theoretically and empirically, we establish that the proposed automaton converges to the optimal action almost surely. Further, used together with the TM, only substantial degrees of determinism reduce accuracy. Energy‐wise, random number generation constitutes switching energy consumption of the TM, saving up to 11 mW power for larger datasets with high d values. Our new learning automaton approach thus facilitates low‐energy ML.</description><identifier>ISSN: 0266-4720</identifier><identifier>EISSN: 1468-0394</identifier><identifier>DOI: 10.1111/exsy.12836</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>Accuracy ; Artificial intelligence ; Deep learning ; Determinism ; Energy consumption ; Energy conversion efficiency ; learning automata ; low‐power machine learning ; Machine learning ; Neural networks ; Tsetlin machine</subject><ispartof>Expert systems, 2023-05, Vol.40 (4), p.n/a</ispartof><rights>2021 The Authors. published by John Wiley &amp; Sons Ltd.</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2966-d458f08c6e2a445c56130af3eaa224c5788ffbd4d1d80eb089bd4a853607c3833</cites><orcidid>0000-0003-4816-2597</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fexsy.12836$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fexsy.12836$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Abeyrathna, Kuruge Darshana</creatorcontrib><creatorcontrib>Granmo, Ole‐Christoffer</creatorcontrib><creatorcontrib>Shafik, Rishad</creatorcontrib><creatorcontrib>Jiao, Lei</creatorcontrib><creatorcontrib>Wheeldon, Adrian</creatorcontrib><creatorcontrib>Yakovlev, Alex</creatorcontrib><creatorcontrib>Lei, Jie</creatorcontrib><creatorcontrib>Goodwin, Morten</creatorcontrib><title>A multi‐step finite‐state automaton for arbitrarily deterministic Tsetlin Machine learning</title><title>Expert systems</title><description>Due to the high arithmetic complexity and scalability challenges of deep learning, there is a critical need to shift research focus towards energy efficiency. Tsetlin Machines (TMs) are a recent approach to machine learning (ML) that has demonstrated significantly reduced energy compared to neural networks alike, while providing comparable accuracy on several benchmarks. However, TMs rely heavily on energy‐costly random number generation to stochastically guide a team of Tsetlin Automata (TA) in TM learning. In this paper, we propose a novel finite‐state learning automaton that can replace the TA in the TM, for increased determinism. The new automaton uses multi‐step deterministic state jumps to reinforce sub‐patterns, without resorting to randomization. A determinism parameter d finely controls trading off the energy consumption of random number generation, against randomization for increased accuracy. Randomization is controlled by flipping a coin before every d'th state jump, ignoring the state jump on tails. For example, d=1 makes every update random and d=∞ makes the automaton completely deterministic. Both theoretically and empirically, we establish that the proposed automaton converges to the optimal action almost surely. Further, used together with the TM, only substantial degrees of determinism reduce accuracy. Energy‐wise, random number generation constitutes switching energy consumption of the TM, saving up to 11 mW power for larger datasets with high d values. Our new learning automaton approach thus facilitates low‐energy ML.</description><subject>Accuracy</subject><subject>Artificial intelligence</subject><subject>Deep learning</subject><subject>Determinism</subject><subject>Energy consumption</subject><subject>Energy conversion efficiency</subject><subject>learning automata</subject><subject>low‐power machine learning</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Tsetlin machine</subject><issn>0266-4720</issn><issn>1468-0394</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp9kMtKAzEUhoMoWKsbnyDgTmjNbTKZZSneoOLCCroxpJlEU-ZSkww6Ox_BZ_RJTDuuPZvDD9-58AFwitEUp7own6GfYiIo3wMjzLiYIFqwfTBChPMJywk6BEchrBFCOM_5CLzMYN1V0f18fYdoNtC6xkWzSyoaqLrY1iq2DbSth8qvXPTKu6qHpYnG14kO0Wm4DCZWroF3Sr-5xsDKKN-45vUYHFhVBXPy18fg8epyOb-ZLO6vb-ezxUSTIj1WskxYJDQ3RDGW6YxjipSlRilCmM5yIaxdlazEpUBmhUSRghIZ5SjXVFA6BmfD3o1v3zsToly3nW_SSUkESg4KgkiizgdK-zYEb6zceFcr30uM5Naf3PqTO38JxgP84SrT_0PKy6eH52HmFwxldl0</recordid><startdate>202305</startdate><enddate>202305</enddate><creator>Abeyrathna, Kuruge Darshana</creator><creator>Granmo, Ole‐Christoffer</creator><creator>Shafik, Rishad</creator><creator>Jiao, Lei</creator><creator>Wheeldon, Adrian</creator><creator>Yakovlev, Alex</creator><creator>Lei, Jie</creator><creator>Goodwin, Morten</creator><general>Blackwell Publishing Ltd</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4816-2597</orcidid></search><sort><creationdate>202305</creationdate><title>A multi‐step finite‐state automaton for arbitrarily deterministic Tsetlin Machine learning</title><author>Abeyrathna, Kuruge Darshana ; Granmo, Ole‐Christoffer ; Shafik, Rishad ; Jiao, Lei ; Wheeldon, Adrian ; Yakovlev, Alex ; Lei, Jie ; Goodwin, Morten</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2966-d458f08c6e2a445c56130af3eaa224c5788ffbd4d1d80eb089bd4a853607c3833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Artificial intelligence</topic><topic>Deep learning</topic><topic>Determinism</topic><topic>Energy consumption</topic><topic>Energy conversion efficiency</topic><topic>learning automata</topic><topic>low‐power machine learning</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Tsetlin machine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abeyrathna, Kuruge Darshana</creatorcontrib><creatorcontrib>Granmo, Ole‐Christoffer</creatorcontrib><creatorcontrib>Shafik, Rishad</creatorcontrib><creatorcontrib>Jiao, Lei</creatorcontrib><creatorcontrib>Wheeldon, Adrian</creatorcontrib><creatorcontrib>Yakovlev, Alex</creatorcontrib><creatorcontrib>Lei, Jie</creatorcontrib><creatorcontrib>Goodwin, Morten</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Expert systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abeyrathna, Kuruge Darshana</au><au>Granmo, Ole‐Christoffer</au><au>Shafik, Rishad</au><au>Jiao, Lei</au><au>Wheeldon, Adrian</au><au>Yakovlev, Alex</au><au>Lei, Jie</au><au>Goodwin, Morten</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A multi‐step finite‐state automaton for arbitrarily deterministic Tsetlin Machine learning</atitle><jtitle>Expert systems</jtitle><date>2023-05</date><risdate>2023</risdate><volume>40</volume><issue>4</issue><epage>n/a</epage><issn>0266-4720</issn><eissn>1468-0394</eissn><abstract>Due to the high arithmetic complexity and scalability challenges of deep learning, there is a critical need to shift research focus towards energy efficiency. Tsetlin Machines (TMs) are a recent approach to machine learning (ML) that has demonstrated significantly reduced energy compared to neural networks alike, while providing comparable accuracy on several benchmarks. However, TMs rely heavily on energy‐costly random number generation to stochastically guide a team of Tsetlin Automata (TA) in TM learning. In this paper, we propose a novel finite‐state learning automaton that can replace the TA in the TM, for increased determinism. The new automaton uses multi‐step deterministic state jumps to reinforce sub‐patterns, without resorting to randomization. A determinism parameter d finely controls trading off the energy consumption of random number generation, against randomization for increased accuracy. Randomization is controlled by flipping a coin before every d'th state jump, ignoring the state jump on tails. For example, d=1 makes every update random and d=∞ makes the automaton completely deterministic. Both theoretically and empirically, we establish that the proposed automaton converges to the optimal action almost surely. Further, used together with the TM, only substantial degrees of determinism reduce accuracy. Energy‐wise, random number generation constitutes switching energy consumption of the TM, saving up to 11 mW power for larger datasets with high d values. Our new learning automaton approach thus facilitates low‐energy ML.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/exsy.12836</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-4816-2597</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0266-4720
ispartof Expert systems, 2023-05, Vol.40 (4), p.n/a
issn 0266-4720
1468-0394
language eng
recordid cdi_proquest_journals_2800399202
source Wiley Online Library Journals Frontfile Complete; Business Source Complete
subjects Accuracy
Artificial intelligence
Deep learning
Determinism
Energy consumption
Energy conversion efficiency
learning automata
low‐power machine learning
Machine learning
Neural networks
Tsetlin machine
title A multi‐step finite‐state automaton for arbitrarily deterministic Tsetlin Machine learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T16%3A28%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20multi%E2%80%90step%20finite%E2%80%90state%20automaton%20for%20arbitrarily%20deterministic%20Tsetlin%20Machine%20learning&rft.jtitle=Expert%20systems&rft.au=Abeyrathna,%20Kuruge%20Darshana&rft.date=2023-05&rft.volume=40&rft.issue=4&rft.epage=n/a&rft.issn=0266-4720&rft.eissn=1468-0394&rft_id=info:doi/10.1111/exsy.12836&rft_dat=%3Cproquest_cross%3E2800399202%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2800399202&rft_id=info:pmid/&rfr_iscdi=true