Scattering of coherent acoustic phonons by silica nanoparticles reveals the 3D-morphology of cells in solution down to nanometer thicknesses

In this work, we show that the use of silica nanoparticles improves the imaging and 3D-morphological measurement down to nanometer thicknesses of fixed cells in solution with picosecond ultrasonics (PU). Synchronized ultrafast fs-laser pulses are used to generate coherent acoustic phonons (CAPs) tha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2023-04, Vol.133 (14)
Hauptverfasser: Ponge, Marie-Fraise, Bruno, François, Le Ridant, Louise, Liu, Liwang, Rémy, Murielle, Shi, Dongsheng, Durrieu, Marie-Christine, Audoin, Bertrand
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 14
container_start_page
container_title Journal of applied physics
container_volume 133
creator Ponge, Marie-Fraise
Bruno, François
Le Ridant, Louise
Liu, Liwang
Rémy, Murielle
Shi, Dongsheng
Durrieu, Marie-Christine
Audoin, Bertrand
description In this work, we show that the use of silica nanoparticles improves the imaging and 3D-morphological measurement down to nanometer thicknesses of fixed cells in solution with picosecond ultrasonics (PU). Synchronized ultrafast fs-laser pulses are used to generate coherent acoustic phonons (CAPs) that evoke the Brillouin light scattering and enable the recording of the time-resolved Brillouin oscillations along with the propagation of the acoustic nanopulses through a thin transparent cell in solution. Silica nanoparticles, whose size matches the phonon wavelength at the frequency of the Brillouin scattering in the solution, are used to strongly scatter the CAPs in the solution. Suppressing the Brillouin signature of the surrounding liquid, this protocol improves significantly the PU imaging and makes it possible to measure the mechanical properties of a transparent cell, including the thin peripheral region where the thickness is less than the Brillouin wavelength, equal to half the probe light wavelength in the cell, and where crucial interaction of the cell with its surroundings occurs. We present experimental evidence of the considerable improvement in the cartography of the entire cell using nanoparticles. The intricate frequency dependence of Brillouin scattering and of resonances for a very thin cell is analyzed using a semi-analytical model leading to the challenging measurement of the 3D-morphology of the immersed cell at thicknesses down to 1 / 9 of the optical wavelength.
doi_str_mv 10.1063/5.0141168
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2800337463</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2800337463</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-6e2e56009083c46a50b6d2b688efabd175a0c50657ca6c4c6ab96382119ada243</originalsourceid><addsrcrecordid>eNqdkM1KxDAUhYMoOP4sfIOAK4XqTdOk6VL8B8GFui5peutEO0lNMsq8gw9tdAT3ru7ifOcc7iHkgMEJA8lPxQmwijGpNsiMgWqKWgjYJDOAkhWqqZttshPjCwBjijcz8vlgdEoYrHumfqDGzzGgS1Qbv4zJGjrNvfMu0m5Fox2t0dRp5ycdsjhipAHfUY-RpjlSflEsfMiO0T-vfuJwzJJ1NPpxmax3tPcfjib_E7LAXJyN1rw6jBHjHtkachbu_95d8nR1-Xh-U9zdX9-en90VhpdlKiSWKCRAA4qbSmoBnezLTiqFg-56VgsNRoAUtdHSVEbqrpFclYw1utdlxXfJ4Tp3Cv5tiTG1L34ZXK5sSwXAeV1JnqmjNWWCjzHg0E7BLnRYtQza77Fb0f6OndnjNRuNTfr70__B7z78ge3UD_wLlueP7Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2800337463</pqid></control><display><type>article</type><title>Scattering of coherent acoustic phonons by silica nanoparticles reveals the 3D-morphology of cells in solution down to nanometer thicknesses</title><source>American Institute of Physics (AIP) Journals</source><source>Alma/SFX Local Collection</source><creator>Ponge, Marie-Fraise ; Bruno, François ; Le Ridant, Louise ; Liu, Liwang ; Rémy, Murielle ; Shi, Dongsheng ; Durrieu, Marie-Christine ; Audoin, Bertrand</creator><creatorcontrib>Ponge, Marie-Fraise ; Bruno, François ; Le Ridant, Louise ; Liu, Liwang ; Rémy, Murielle ; Shi, Dongsheng ; Durrieu, Marie-Christine ; Audoin, Bertrand</creatorcontrib><description>In this work, we show that the use of silica nanoparticles improves the imaging and 3D-morphological measurement down to nanometer thicknesses of fixed cells in solution with picosecond ultrasonics (PU). Synchronized ultrafast fs-laser pulses are used to generate coherent acoustic phonons (CAPs) that evoke the Brillouin light scattering and enable the recording of the time-resolved Brillouin oscillations along with the propagation of the acoustic nanopulses through a thin transparent cell in solution. Silica nanoparticles, whose size matches the phonon wavelength at the frequency of the Brillouin scattering in the solution, are used to strongly scatter the CAPs in the solution. Suppressing the Brillouin signature of the surrounding liquid, this protocol improves significantly the PU imaging and makes it possible to measure the mechanical properties of a transparent cell, including the thin peripheral region where the thickness is less than the Brillouin wavelength, equal to half the probe light wavelength in the cell, and where crucial interaction of the cell with its surroundings occurs. We present experimental evidence of the considerable improvement in the cartography of the entire cell using nanoparticles. The intricate frequency dependence of Brillouin scattering and of resonances for a very thin cell is analyzed using a semi-analytical model leading to the challenging measurement of the 3D-morphology of the immersed cell at thicknesses down to 1 / 9 of the optical wavelength.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0141168</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Acoustic propagation ; Acoustics ; Cartography ; Coherent scattering ; Mechanical properties ; Morphology ; Nanoparticles ; Phonons ; Resonance scattering ; Silicon dioxide ; Thickness</subject><ispartof>Journal of applied physics, 2023-04, Vol.133 (14)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c322t-6e2e56009083c46a50b6d2b688efabd175a0c50657ca6c4c6ab96382119ada243</cites><orcidid>0009-0007-0690-1044 ; 0000-0001-7273-4466 ; 0000-0003-0707-9180 ; 0000-0003-4632-9883 ; 0000-0003-0583-9289 ; 0009-0005-1754-9336</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/5.0141168$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids></links><search><creatorcontrib>Ponge, Marie-Fraise</creatorcontrib><creatorcontrib>Bruno, François</creatorcontrib><creatorcontrib>Le Ridant, Louise</creatorcontrib><creatorcontrib>Liu, Liwang</creatorcontrib><creatorcontrib>Rémy, Murielle</creatorcontrib><creatorcontrib>Shi, Dongsheng</creatorcontrib><creatorcontrib>Durrieu, Marie-Christine</creatorcontrib><creatorcontrib>Audoin, Bertrand</creatorcontrib><title>Scattering of coherent acoustic phonons by silica nanoparticles reveals the 3D-morphology of cells in solution down to nanometer thicknesses</title><title>Journal of applied physics</title><description>In this work, we show that the use of silica nanoparticles improves the imaging and 3D-morphological measurement down to nanometer thicknesses of fixed cells in solution with picosecond ultrasonics (PU). Synchronized ultrafast fs-laser pulses are used to generate coherent acoustic phonons (CAPs) that evoke the Brillouin light scattering and enable the recording of the time-resolved Brillouin oscillations along with the propagation of the acoustic nanopulses through a thin transparent cell in solution. Silica nanoparticles, whose size matches the phonon wavelength at the frequency of the Brillouin scattering in the solution, are used to strongly scatter the CAPs in the solution. Suppressing the Brillouin signature of the surrounding liquid, this protocol improves significantly the PU imaging and makes it possible to measure the mechanical properties of a transparent cell, including the thin peripheral region where the thickness is less than the Brillouin wavelength, equal to half the probe light wavelength in the cell, and where crucial interaction of the cell with its surroundings occurs. We present experimental evidence of the considerable improvement in the cartography of the entire cell using nanoparticles. The intricate frequency dependence of Brillouin scattering and of resonances for a very thin cell is analyzed using a semi-analytical model leading to the challenging measurement of the 3D-morphology of the immersed cell at thicknesses down to 1 / 9 of the optical wavelength.</description><subject>Acoustic propagation</subject><subject>Acoustics</subject><subject>Cartography</subject><subject>Coherent scattering</subject><subject>Mechanical properties</subject><subject>Morphology</subject><subject>Nanoparticles</subject><subject>Phonons</subject><subject>Resonance scattering</subject><subject>Silicon dioxide</subject><subject>Thickness</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqdkM1KxDAUhYMoOP4sfIOAK4XqTdOk6VL8B8GFui5peutEO0lNMsq8gw9tdAT3ru7ifOcc7iHkgMEJA8lPxQmwijGpNsiMgWqKWgjYJDOAkhWqqZttshPjCwBjijcz8vlgdEoYrHumfqDGzzGgS1Qbv4zJGjrNvfMu0m5Fox2t0dRp5ycdsjhipAHfUY-RpjlSflEsfMiO0T-vfuJwzJJ1NPpxmax3tPcfjib_E7LAXJyN1rw6jBHjHtkachbu_95d8nR1-Xh-U9zdX9-en90VhpdlKiSWKCRAA4qbSmoBnezLTiqFg-56VgsNRoAUtdHSVEbqrpFclYw1utdlxXfJ4Tp3Cv5tiTG1L34ZXK5sSwXAeV1JnqmjNWWCjzHg0E7BLnRYtQza77Fb0f6OndnjNRuNTfr70__B7z78ge3UD_wLlueP7Q</recordid><startdate>20230414</startdate><enddate>20230414</enddate><creator>Ponge, Marie-Fraise</creator><creator>Bruno, François</creator><creator>Le Ridant, Louise</creator><creator>Liu, Liwang</creator><creator>Rémy, Murielle</creator><creator>Shi, Dongsheng</creator><creator>Durrieu, Marie-Christine</creator><creator>Audoin, Bertrand</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0007-0690-1044</orcidid><orcidid>https://orcid.org/0000-0001-7273-4466</orcidid><orcidid>https://orcid.org/0000-0003-0707-9180</orcidid><orcidid>https://orcid.org/0000-0003-4632-9883</orcidid><orcidid>https://orcid.org/0000-0003-0583-9289</orcidid><orcidid>https://orcid.org/0009-0005-1754-9336</orcidid></search><sort><creationdate>20230414</creationdate><title>Scattering of coherent acoustic phonons by silica nanoparticles reveals the 3D-morphology of cells in solution down to nanometer thicknesses</title><author>Ponge, Marie-Fraise ; Bruno, François ; Le Ridant, Louise ; Liu, Liwang ; Rémy, Murielle ; Shi, Dongsheng ; Durrieu, Marie-Christine ; Audoin, Bertrand</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-6e2e56009083c46a50b6d2b688efabd175a0c50657ca6c4c6ab96382119ada243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Acoustic propagation</topic><topic>Acoustics</topic><topic>Cartography</topic><topic>Coherent scattering</topic><topic>Mechanical properties</topic><topic>Morphology</topic><topic>Nanoparticles</topic><topic>Phonons</topic><topic>Resonance scattering</topic><topic>Silicon dioxide</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ponge, Marie-Fraise</creatorcontrib><creatorcontrib>Bruno, François</creatorcontrib><creatorcontrib>Le Ridant, Louise</creatorcontrib><creatorcontrib>Liu, Liwang</creatorcontrib><creatorcontrib>Rémy, Murielle</creatorcontrib><creatorcontrib>Shi, Dongsheng</creatorcontrib><creatorcontrib>Durrieu, Marie-Christine</creatorcontrib><creatorcontrib>Audoin, Bertrand</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ponge, Marie-Fraise</au><au>Bruno, François</au><au>Le Ridant, Louise</au><au>Liu, Liwang</au><au>Rémy, Murielle</au><au>Shi, Dongsheng</au><au>Durrieu, Marie-Christine</au><au>Audoin, Bertrand</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scattering of coherent acoustic phonons by silica nanoparticles reveals the 3D-morphology of cells in solution down to nanometer thicknesses</atitle><jtitle>Journal of applied physics</jtitle><date>2023-04-14</date><risdate>2023</risdate><volume>133</volume><issue>14</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>In this work, we show that the use of silica nanoparticles improves the imaging and 3D-morphological measurement down to nanometer thicknesses of fixed cells in solution with picosecond ultrasonics (PU). Synchronized ultrafast fs-laser pulses are used to generate coherent acoustic phonons (CAPs) that evoke the Brillouin light scattering and enable the recording of the time-resolved Brillouin oscillations along with the propagation of the acoustic nanopulses through a thin transparent cell in solution. Silica nanoparticles, whose size matches the phonon wavelength at the frequency of the Brillouin scattering in the solution, are used to strongly scatter the CAPs in the solution. Suppressing the Brillouin signature of the surrounding liquid, this protocol improves significantly the PU imaging and makes it possible to measure the mechanical properties of a transparent cell, including the thin peripheral region where the thickness is less than the Brillouin wavelength, equal to half the probe light wavelength in the cell, and where crucial interaction of the cell with its surroundings occurs. We present experimental evidence of the considerable improvement in the cartography of the entire cell using nanoparticles. The intricate frequency dependence of Brillouin scattering and of resonances for a very thin cell is analyzed using a semi-analytical model leading to the challenging measurement of the 3D-morphology of the immersed cell at thicknesses down to 1 / 9 of the optical wavelength.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0141168</doi><tpages>12</tpages><orcidid>https://orcid.org/0009-0007-0690-1044</orcidid><orcidid>https://orcid.org/0000-0001-7273-4466</orcidid><orcidid>https://orcid.org/0000-0003-0707-9180</orcidid><orcidid>https://orcid.org/0000-0003-4632-9883</orcidid><orcidid>https://orcid.org/0000-0003-0583-9289</orcidid><orcidid>https://orcid.org/0009-0005-1754-9336</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2023-04, Vol.133 (14)
issn 0021-8979
1089-7550
language eng
recordid cdi_proquest_journals_2800337463
source American Institute of Physics (AIP) Journals; Alma/SFX Local Collection
subjects Acoustic propagation
Acoustics
Cartography
Coherent scattering
Mechanical properties
Morphology
Nanoparticles
Phonons
Resonance scattering
Silicon dioxide
Thickness
title Scattering of coherent acoustic phonons by silica nanoparticles reveals the 3D-morphology of cells in solution down to nanometer thicknesses
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T14%3A32%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scattering%20of%20coherent%20acoustic%20phonons%20by%20silica%20nanoparticles%20reveals%20the%203D-morphology%20of%20cells%20in%20solution%20down%20to%20nanometer%20thicknesses&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Ponge,%20Marie-Fraise&rft.date=2023-04-14&rft.volume=133&rft.issue=14&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0141168&rft_dat=%3Cproquest_scita%3E2800337463%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2800337463&rft_id=info:pmid/&rfr_iscdi=true