Scattering of coherent acoustic phonons by silica nanoparticles reveals the 3D-morphology of cells in solution down to nanometer thicknesses
In this work, we show that the use of silica nanoparticles improves the imaging and 3D-morphological measurement down to nanometer thicknesses of fixed cells in solution with picosecond ultrasonics (PU). Synchronized ultrafast fs-laser pulses are used to generate coherent acoustic phonons (CAPs) tha...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2023-04, Vol.133 (14) |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 14 |
container_start_page | |
container_title | Journal of applied physics |
container_volume | 133 |
creator | Ponge, Marie-Fraise Bruno, François Le Ridant, Louise Liu, Liwang Rémy, Murielle Shi, Dongsheng Durrieu, Marie-Christine Audoin, Bertrand |
description | In this work, we show that the use of silica nanoparticles improves the imaging and 3D-morphological measurement down to nanometer thicknesses of fixed cells in solution with picosecond ultrasonics (PU). Synchronized ultrafast fs-laser pulses are used to generate coherent acoustic phonons (CAPs) that evoke the Brillouin light scattering and enable the recording of the time-resolved Brillouin oscillations along with the propagation of the acoustic nanopulses through a thin transparent cell in solution. Silica nanoparticles, whose size matches the phonon wavelength at the frequency of the Brillouin scattering in the solution, are used to strongly scatter the CAPs in the solution. Suppressing the Brillouin signature of the surrounding liquid, this protocol improves significantly the PU imaging and makes it possible to measure the mechanical properties of a transparent cell, including the thin peripheral region where the thickness is less than the Brillouin wavelength, equal to half the probe light wavelength in the cell, and where crucial interaction of the cell with its surroundings occurs. We present experimental evidence of the considerable improvement in the cartography of the entire cell using nanoparticles. The intricate frequency dependence of Brillouin scattering and of resonances for a very thin cell is analyzed using a semi-analytical model leading to the challenging measurement of the 3D-morphology of the immersed cell at thicknesses down to
1
/
9 of the optical wavelength. |
doi_str_mv | 10.1063/5.0141168 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2800337463</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2800337463</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-6e2e56009083c46a50b6d2b688efabd175a0c50657ca6c4c6ab96382119ada243</originalsourceid><addsrcrecordid>eNqdkM1KxDAUhYMoOP4sfIOAK4XqTdOk6VL8B8GFui5peutEO0lNMsq8gw9tdAT3ru7ifOcc7iHkgMEJA8lPxQmwijGpNsiMgWqKWgjYJDOAkhWqqZttshPjCwBjijcz8vlgdEoYrHumfqDGzzGgS1Qbv4zJGjrNvfMu0m5Fox2t0dRp5ycdsjhipAHfUY-RpjlSflEsfMiO0T-vfuJwzJJ1NPpxmax3tPcfjib_E7LAXJyN1rw6jBHjHtkachbu_95d8nR1-Xh-U9zdX9-en90VhpdlKiSWKCRAA4qbSmoBnezLTiqFg-56VgsNRoAUtdHSVEbqrpFclYw1utdlxXfJ4Tp3Cv5tiTG1L34ZXK5sSwXAeV1JnqmjNWWCjzHg0E7BLnRYtQza77Fb0f6OndnjNRuNTfr70__B7z78ge3UD_wLlueP7Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2800337463</pqid></control><display><type>article</type><title>Scattering of coherent acoustic phonons by silica nanoparticles reveals the 3D-morphology of cells in solution down to nanometer thicknesses</title><source>American Institute of Physics (AIP) Journals</source><source>Alma/SFX Local Collection</source><creator>Ponge, Marie-Fraise ; Bruno, François ; Le Ridant, Louise ; Liu, Liwang ; Rémy, Murielle ; Shi, Dongsheng ; Durrieu, Marie-Christine ; Audoin, Bertrand</creator><creatorcontrib>Ponge, Marie-Fraise ; Bruno, François ; Le Ridant, Louise ; Liu, Liwang ; Rémy, Murielle ; Shi, Dongsheng ; Durrieu, Marie-Christine ; Audoin, Bertrand</creatorcontrib><description>In this work, we show that the use of silica nanoparticles improves the imaging and 3D-morphological measurement down to nanometer thicknesses of fixed cells in solution with picosecond ultrasonics (PU). Synchronized ultrafast fs-laser pulses are used to generate coherent acoustic phonons (CAPs) that evoke the Brillouin light scattering and enable the recording of the time-resolved Brillouin oscillations along with the propagation of the acoustic nanopulses through a thin transparent cell in solution. Silica nanoparticles, whose size matches the phonon wavelength at the frequency of the Brillouin scattering in the solution, are used to strongly scatter the CAPs in the solution. Suppressing the Brillouin signature of the surrounding liquid, this protocol improves significantly the PU imaging and makes it possible to measure the mechanical properties of a transparent cell, including the thin peripheral region where the thickness is less than the Brillouin wavelength, equal to half the probe light wavelength in the cell, and where crucial interaction of the cell with its surroundings occurs. We present experimental evidence of the considerable improvement in the cartography of the entire cell using nanoparticles. The intricate frequency dependence of Brillouin scattering and of resonances for a very thin cell is analyzed using a semi-analytical model leading to the challenging measurement of the 3D-morphology of the immersed cell at thicknesses down to
1
/
9 of the optical wavelength.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0141168</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Acoustic propagation ; Acoustics ; Cartography ; Coherent scattering ; Mechanical properties ; Morphology ; Nanoparticles ; Phonons ; Resonance scattering ; Silicon dioxide ; Thickness</subject><ispartof>Journal of applied physics, 2023-04, Vol.133 (14)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c322t-6e2e56009083c46a50b6d2b688efabd175a0c50657ca6c4c6ab96382119ada243</cites><orcidid>0009-0007-0690-1044 ; 0000-0001-7273-4466 ; 0000-0003-0707-9180 ; 0000-0003-4632-9883 ; 0000-0003-0583-9289 ; 0009-0005-1754-9336</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/5.0141168$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids></links><search><creatorcontrib>Ponge, Marie-Fraise</creatorcontrib><creatorcontrib>Bruno, François</creatorcontrib><creatorcontrib>Le Ridant, Louise</creatorcontrib><creatorcontrib>Liu, Liwang</creatorcontrib><creatorcontrib>Rémy, Murielle</creatorcontrib><creatorcontrib>Shi, Dongsheng</creatorcontrib><creatorcontrib>Durrieu, Marie-Christine</creatorcontrib><creatorcontrib>Audoin, Bertrand</creatorcontrib><title>Scattering of coherent acoustic phonons by silica nanoparticles reveals the 3D-morphology of cells in solution down to nanometer thicknesses</title><title>Journal of applied physics</title><description>In this work, we show that the use of silica nanoparticles improves the imaging and 3D-morphological measurement down to nanometer thicknesses of fixed cells in solution with picosecond ultrasonics (PU). Synchronized ultrafast fs-laser pulses are used to generate coherent acoustic phonons (CAPs) that evoke the Brillouin light scattering and enable the recording of the time-resolved Brillouin oscillations along with the propagation of the acoustic nanopulses through a thin transparent cell in solution. Silica nanoparticles, whose size matches the phonon wavelength at the frequency of the Brillouin scattering in the solution, are used to strongly scatter the CAPs in the solution. Suppressing the Brillouin signature of the surrounding liquid, this protocol improves significantly the PU imaging and makes it possible to measure the mechanical properties of a transparent cell, including the thin peripheral region where the thickness is less than the Brillouin wavelength, equal to half the probe light wavelength in the cell, and where crucial interaction of the cell with its surroundings occurs. We present experimental evidence of the considerable improvement in the cartography of the entire cell using nanoparticles. The intricate frequency dependence of Brillouin scattering and of resonances for a very thin cell is analyzed using a semi-analytical model leading to the challenging measurement of the 3D-morphology of the immersed cell at thicknesses down to
1
/
9 of the optical wavelength.</description><subject>Acoustic propagation</subject><subject>Acoustics</subject><subject>Cartography</subject><subject>Coherent scattering</subject><subject>Mechanical properties</subject><subject>Morphology</subject><subject>Nanoparticles</subject><subject>Phonons</subject><subject>Resonance scattering</subject><subject>Silicon dioxide</subject><subject>Thickness</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqdkM1KxDAUhYMoOP4sfIOAK4XqTdOk6VL8B8GFui5peutEO0lNMsq8gw9tdAT3ru7ifOcc7iHkgMEJA8lPxQmwijGpNsiMgWqKWgjYJDOAkhWqqZttshPjCwBjijcz8vlgdEoYrHumfqDGzzGgS1Qbv4zJGjrNvfMu0m5Fox2t0dRp5ycdsjhipAHfUY-RpjlSflEsfMiO0T-vfuJwzJJ1NPpxmax3tPcfjib_E7LAXJyN1rw6jBHjHtkachbu_95d8nR1-Xh-U9zdX9-en90VhpdlKiSWKCRAA4qbSmoBnezLTiqFg-56VgsNRoAUtdHSVEbqrpFclYw1utdlxXfJ4Tp3Cv5tiTG1L34ZXK5sSwXAeV1JnqmjNWWCjzHg0E7BLnRYtQza77Fb0f6OndnjNRuNTfr70__B7z78ge3UD_wLlueP7Q</recordid><startdate>20230414</startdate><enddate>20230414</enddate><creator>Ponge, Marie-Fraise</creator><creator>Bruno, François</creator><creator>Le Ridant, Louise</creator><creator>Liu, Liwang</creator><creator>Rémy, Murielle</creator><creator>Shi, Dongsheng</creator><creator>Durrieu, Marie-Christine</creator><creator>Audoin, Bertrand</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0007-0690-1044</orcidid><orcidid>https://orcid.org/0000-0001-7273-4466</orcidid><orcidid>https://orcid.org/0000-0003-0707-9180</orcidid><orcidid>https://orcid.org/0000-0003-4632-9883</orcidid><orcidid>https://orcid.org/0000-0003-0583-9289</orcidid><orcidid>https://orcid.org/0009-0005-1754-9336</orcidid></search><sort><creationdate>20230414</creationdate><title>Scattering of coherent acoustic phonons by silica nanoparticles reveals the 3D-morphology of cells in solution down to nanometer thicknesses</title><author>Ponge, Marie-Fraise ; Bruno, François ; Le Ridant, Louise ; Liu, Liwang ; Rémy, Murielle ; Shi, Dongsheng ; Durrieu, Marie-Christine ; Audoin, Bertrand</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-6e2e56009083c46a50b6d2b688efabd175a0c50657ca6c4c6ab96382119ada243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Acoustic propagation</topic><topic>Acoustics</topic><topic>Cartography</topic><topic>Coherent scattering</topic><topic>Mechanical properties</topic><topic>Morphology</topic><topic>Nanoparticles</topic><topic>Phonons</topic><topic>Resonance scattering</topic><topic>Silicon dioxide</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ponge, Marie-Fraise</creatorcontrib><creatorcontrib>Bruno, François</creatorcontrib><creatorcontrib>Le Ridant, Louise</creatorcontrib><creatorcontrib>Liu, Liwang</creatorcontrib><creatorcontrib>Rémy, Murielle</creatorcontrib><creatorcontrib>Shi, Dongsheng</creatorcontrib><creatorcontrib>Durrieu, Marie-Christine</creatorcontrib><creatorcontrib>Audoin, Bertrand</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ponge, Marie-Fraise</au><au>Bruno, François</au><au>Le Ridant, Louise</au><au>Liu, Liwang</au><au>Rémy, Murielle</au><au>Shi, Dongsheng</au><au>Durrieu, Marie-Christine</au><au>Audoin, Bertrand</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scattering of coherent acoustic phonons by silica nanoparticles reveals the 3D-morphology of cells in solution down to nanometer thicknesses</atitle><jtitle>Journal of applied physics</jtitle><date>2023-04-14</date><risdate>2023</risdate><volume>133</volume><issue>14</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>In this work, we show that the use of silica nanoparticles improves the imaging and 3D-morphological measurement down to nanometer thicknesses of fixed cells in solution with picosecond ultrasonics (PU). Synchronized ultrafast fs-laser pulses are used to generate coherent acoustic phonons (CAPs) that evoke the Brillouin light scattering and enable the recording of the time-resolved Brillouin oscillations along with the propagation of the acoustic nanopulses through a thin transparent cell in solution. Silica nanoparticles, whose size matches the phonon wavelength at the frequency of the Brillouin scattering in the solution, are used to strongly scatter the CAPs in the solution. Suppressing the Brillouin signature of the surrounding liquid, this protocol improves significantly the PU imaging and makes it possible to measure the mechanical properties of a transparent cell, including the thin peripheral region where the thickness is less than the Brillouin wavelength, equal to half the probe light wavelength in the cell, and where crucial interaction of the cell with its surroundings occurs. We present experimental evidence of the considerable improvement in the cartography of the entire cell using nanoparticles. The intricate frequency dependence of Brillouin scattering and of resonances for a very thin cell is analyzed using a semi-analytical model leading to the challenging measurement of the 3D-morphology of the immersed cell at thicknesses down to
1
/
9 of the optical wavelength.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0141168</doi><tpages>12</tpages><orcidid>https://orcid.org/0009-0007-0690-1044</orcidid><orcidid>https://orcid.org/0000-0001-7273-4466</orcidid><orcidid>https://orcid.org/0000-0003-0707-9180</orcidid><orcidid>https://orcid.org/0000-0003-4632-9883</orcidid><orcidid>https://orcid.org/0000-0003-0583-9289</orcidid><orcidid>https://orcid.org/0009-0005-1754-9336</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 2023-04, Vol.133 (14) |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_proquest_journals_2800337463 |
source | American Institute of Physics (AIP) Journals; Alma/SFX Local Collection |
subjects | Acoustic propagation Acoustics Cartography Coherent scattering Mechanical properties Morphology Nanoparticles Phonons Resonance scattering Silicon dioxide Thickness |
title | Scattering of coherent acoustic phonons by silica nanoparticles reveals the 3D-morphology of cells in solution down to nanometer thicknesses |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T14%3A32%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scattering%20of%20coherent%20acoustic%20phonons%20by%20silica%20nanoparticles%20reveals%20the%203D-morphology%20of%20cells%20in%20solution%20down%20to%20nanometer%20thicknesses&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Ponge,%20Marie-Fraise&rft.date=2023-04-14&rft.volume=133&rft.issue=14&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0141168&rft_dat=%3Cproquest_scita%3E2800337463%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2800337463&rft_id=info:pmid/&rfr_iscdi=true |