Investigation and Optimization of the Hot Disk Method for Thermal Conductivity Measurements up to 750 °C

The Hot Disk method is a transient measurement method for the determination of thermal properties like the thermal conductivity, which is characterized by advantages such as a short measurement time or a low effort for the sample preparation. However, some difficulties related to measurements at ele...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of thermophysics 2023-06, Vol.44 (6), Article 82
Hauptverfasser: Heisig, Lisa-Marie, Wulf, Rhena, Fieback, Tobias M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page
container_title International journal of thermophysics
container_volume 44
creator Heisig, Lisa-Marie
Wulf, Rhena
Fieback, Tobias M.
description The Hot Disk method is a transient measurement method for the determination of thermal properties like the thermal conductivity, which is characterized by advantages such as a short measurement time or a low effort for the sample preparation. However, some difficulties related to measurements at elevated temperatures, which could be attributed to inaccuracies of the Temperature Coefficients of Resistance (TCRs), have been pointed out in the past. This paper presents a detailed investigation of the Hot Disk method for the determination of the thermal conductivity and contributes to a further improvement of its measurement accuracy. Subsequent to an extensive literature review of available reference materials for the thermal conductivity, measurements up to 750 °C were carried out with a Hot Disk TPS 2500 S with various Kapton and Mica sensors using three reference materials (Silcal 1100, Pyroceram 9606, Inconel 600). While room-temperature measurements confirmed the suitability of the reference samples as well as the independence of the measured thermal conductivity from the sensor, temperature-dependent measurements allowed the verification of the accuracy of the given TCRs. A set of optimized TCRs is proposed, with which the thermal conductivity of all three reference materials could be determined with an accuracy of 2 %. Furthermore, the measurement uncertainty of ± 5 % specified by the manufacturer could be confirmed. Hence, with the newly suggested TCRs, the Hot Disk method enables the determination of the thermal properties of a variety of materials even at high temperatures with high accuracy.
doi_str_mv 10.1007/s10765-023-03190-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2800198873</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2800198873</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-8206a46486f518a3658d94549b8ec3576c4d46ccd8bb79f91f96be2ba3ea2ce63</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhS0EEqVwAVaWWBvsOP5bovLTSkXdFImd5SROm9LEwXaQymk4AmfoyUgJEjtWI82890bvA-CS4GuCsbgJBAvOEE4owpQojPgRGBEmEqQYF8dghIliSCXy5RSchbDBGCuh6AhsZs27DbFamVi5BpqmgIs2VnX1MSxcCePawqmL8K4Kr_DJxrUrYOk8XK6tr80WTlxTdHms3qu46-8mdN7WtokBdi2MDgqG95_7r8k5OCnNNtiL3zkGzw_3y8kUzRePs8ntHOWU04hkgrlJeSp5yYg0lDNZqJSlKpM2p0zwPC1SnueFzDKhSkVKxTObZIZak-SW0zG4GnJb7966vpzeuM43_UudSNyDkFLQXpUMqty7ELwtdeur2vidJlgfmOqBqe6Z6h-m-hBNB1Poxc3K-r_of1zfG-l7fg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2800198873</pqid></control><display><type>article</type><title>Investigation and Optimization of the Hot Disk Method for Thermal Conductivity Measurements up to 750 °C</title><source>SpringerLink Journals</source><creator>Heisig, Lisa-Marie ; Wulf, Rhena ; Fieback, Tobias M.</creator><creatorcontrib>Heisig, Lisa-Marie ; Wulf, Rhena ; Fieback, Tobias M.</creatorcontrib><description>The Hot Disk method is a transient measurement method for the determination of thermal properties like the thermal conductivity, which is characterized by advantages such as a short measurement time or a low effort for the sample preparation. However, some difficulties related to measurements at elevated temperatures, which could be attributed to inaccuracies of the Temperature Coefficients of Resistance (TCRs), have been pointed out in the past. This paper presents a detailed investigation of the Hot Disk method for the determination of the thermal conductivity and contributes to a further improvement of its measurement accuracy. Subsequent to an extensive literature review of available reference materials for the thermal conductivity, measurements up to 750 °C were carried out with a Hot Disk TPS 2500 S with various Kapton and Mica sensors using three reference materials (Silcal 1100, Pyroceram 9606, Inconel 600). While room-temperature measurements confirmed the suitability of the reference samples as well as the independence of the measured thermal conductivity from the sensor, temperature-dependent measurements allowed the verification of the accuracy of the given TCRs. A set of optimized TCRs is proposed, with which the thermal conductivity of all three reference materials could be determined with an accuracy of 2 %. Furthermore, the measurement uncertainty of ± 5 % specified by the manufacturer could be confirmed. Hence, with the newly suggested TCRs, the Hot Disk method enables the determination of the thermal properties of a variety of materials even at high temperatures with high accuracy.</description><identifier>ISSN: 0195-928X</identifier><identifier>EISSN: 1572-9567</identifier><identifier>DOI: 10.1007/s10765-023-03190-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Accuracy ; Classical Mechanics ; Condensed Matter Physics ; Geophysics ; Heat conductivity ; Heat transfer ; High temperature ; Industrial Chemistry/Chemical Engineering ; Kapton (trademark) ; Literature reviews ; Measurement methods ; Mica ; Optimization ; Physical Chemistry ; Physics ; Physics and Astronomy ; Polyimide resins ; Pyroceram (trademark) ; Reference materials ; Room temperature ; Temperature ; Temperature dependence ; Thermal conductivity ; Thermodynamic properties ; Thermodynamics</subject><ispartof>International journal of thermophysics, 2023-06, Vol.44 (6), Article 82</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-8206a46486f518a3658d94549b8ec3576c4d46ccd8bb79f91f96be2ba3ea2ce63</citedby><cites>FETCH-LOGICAL-c363t-8206a46486f518a3658d94549b8ec3576c4d46ccd8bb79f91f96be2ba3ea2ce63</cites><orcidid>0000-0002-3776-8190</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10765-023-03190-6$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10765-023-03190-6$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Heisig, Lisa-Marie</creatorcontrib><creatorcontrib>Wulf, Rhena</creatorcontrib><creatorcontrib>Fieback, Tobias M.</creatorcontrib><title>Investigation and Optimization of the Hot Disk Method for Thermal Conductivity Measurements up to 750 °C</title><title>International journal of thermophysics</title><addtitle>Int J Thermophys</addtitle><description>The Hot Disk method is a transient measurement method for the determination of thermal properties like the thermal conductivity, which is characterized by advantages such as a short measurement time or a low effort for the sample preparation. However, some difficulties related to measurements at elevated temperatures, which could be attributed to inaccuracies of the Temperature Coefficients of Resistance (TCRs), have been pointed out in the past. This paper presents a detailed investigation of the Hot Disk method for the determination of the thermal conductivity and contributes to a further improvement of its measurement accuracy. Subsequent to an extensive literature review of available reference materials for the thermal conductivity, measurements up to 750 °C were carried out with a Hot Disk TPS 2500 S with various Kapton and Mica sensors using three reference materials (Silcal 1100, Pyroceram 9606, Inconel 600). While room-temperature measurements confirmed the suitability of the reference samples as well as the independence of the measured thermal conductivity from the sensor, temperature-dependent measurements allowed the verification of the accuracy of the given TCRs. A set of optimized TCRs is proposed, with which the thermal conductivity of all three reference materials could be determined with an accuracy of 2 %. Furthermore, the measurement uncertainty of ± 5 % specified by the manufacturer could be confirmed. Hence, with the newly suggested TCRs, the Hot Disk method enables the determination of the thermal properties of a variety of materials even at high temperatures with high accuracy.</description><subject>Accuracy</subject><subject>Classical Mechanics</subject><subject>Condensed Matter Physics</subject><subject>Geophysics</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>High temperature</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Kapton (trademark)</subject><subject>Literature reviews</subject><subject>Measurement methods</subject><subject>Mica</subject><subject>Optimization</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Polyimide resins</subject><subject>Pyroceram (trademark)</subject><subject>Reference materials</subject><subject>Room temperature</subject><subject>Temperature</subject><subject>Temperature dependence</subject><subject>Thermal conductivity</subject><subject>Thermodynamic properties</subject><subject>Thermodynamics</subject><issn>0195-928X</issn><issn>1572-9567</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kE1OwzAQhS0EEqVwAVaWWBvsOP5bovLTSkXdFImd5SROm9LEwXaQymk4AmfoyUgJEjtWI82890bvA-CS4GuCsbgJBAvOEE4owpQojPgRGBEmEqQYF8dghIliSCXy5RSchbDBGCuh6AhsZs27DbFamVi5BpqmgIs2VnX1MSxcCePawqmL8K4Kr_DJxrUrYOk8XK6tr80WTlxTdHms3qu46-8mdN7WtokBdi2MDgqG95_7r8k5OCnNNtiL3zkGzw_3y8kUzRePs8ntHOWU04hkgrlJeSp5yYg0lDNZqJSlKpM2p0zwPC1SnueFzDKhSkVKxTObZIZak-SW0zG4GnJb7966vpzeuM43_UudSNyDkFLQXpUMqty7ELwtdeur2vidJlgfmOqBqe6Z6h-m-hBNB1Poxc3K-r_of1zfG-l7fg</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Heisig, Lisa-Marie</creator><creator>Wulf, Rhena</creator><creator>Fieback, Tobias M.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3776-8190</orcidid></search><sort><creationdate>20230601</creationdate><title>Investigation and Optimization of the Hot Disk Method for Thermal Conductivity Measurements up to 750 °C</title><author>Heisig, Lisa-Marie ; Wulf, Rhena ; Fieback, Tobias M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-8206a46486f518a3658d94549b8ec3576c4d46ccd8bb79f91f96be2ba3ea2ce63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Classical Mechanics</topic><topic>Condensed Matter Physics</topic><topic>Geophysics</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>High temperature</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Kapton (trademark)</topic><topic>Literature reviews</topic><topic>Measurement methods</topic><topic>Mica</topic><topic>Optimization</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Polyimide resins</topic><topic>Pyroceram (trademark)</topic><topic>Reference materials</topic><topic>Room temperature</topic><topic>Temperature</topic><topic>Temperature dependence</topic><topic>Thermal conductivity</topic><topic>Thermodynamic properties</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heisig, Lisa-Marie</creatorcontrib><creatorcontrib>Wulf, Rhena</creatorcontrib><creatorcontrib>Fieback, Tobias M.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>International journal of thermophysics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heisig, Lisa-Marie</au><au>Wulf, Rhena</au><au>Fieback, Tobias M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation and Optimization of the Hot Disk Method for Thermal Conductivity Measurements up to 750 °C</atitle><jtitle>International journal of thermophysics</jtitle><stitle>Int J Thermophys</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>44</volume><issue>6</issue><artnum>82</artnum><issn>0195-928X</issn><eissn>1572-9567</eissn><abstract>The Hot Disk method is a transient measurement method for the determination of thermal properties like the thermal conductivity, which is characterized by advantages such as a short measurement time or a low effort for the sample preparation. However, some difficulties related to measurements at elevated temperatures, which could be attributed to inaccuracies of the Temperature Coefficients of Resistance (TCRs), have been pointed out in the past. This paper presents a detailed investigation of the Hot Disk method for the determination of the thermal conductivity and contributes to a further improvement of its measurement accuracy. Subsequent to an extensive literature review of available reference materials for the thermal conductivity, measurements up to 750 °C were carried out with a Hot Disk TPS 2500 S with various Kapton and Mica sensors using three reference materials (Silcal 1100, Pyroceram 9606, Inconel 600). While room-temperature measurements confirmed the suitability of the reference samples as well as the independence of the measured thermal conductivity from the sensor, temperature-dependent measurements allowed the verification of the accuracy of the given TCRs. A set of optimized TCRs is proposed, with which the thermal conductivity of all three reference materials could be determined with an accuracy of 2 %. Furthermore, the measurement uncertainty of ± 5 % specified by the manufacturer could be confirmed. Hence, with the newly suggested TCRs, the Hot Disk method enables the determination of the thermal properties of a variety of materials even at high temperatures with high accuracy.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10765-023-03190-6</doi><orcidid>https://orcid.org/0000-0002-3776-8190</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0195-928X
ispartof International journal of thermophysics, 2023-06, Vol.44 (6), Article 82
issn 0195-928X
1572-9567
language eng
recordid cdi_proquest_journals_2800198873
source SpringerLink Journals
subjects Accuracy
Classical Mechanics
Condensed Matter Physics
Geophysics
Heat conductivity
Heat transfer
High temperature
Industrial Chemistry/Chemical Engineering
Kapton (trademark)
Literature reviews
Measurement methods
Mica
Optimization
Physical Chemistry
Physics
Physics and Astronomy
Polyimide resins
Pyroceram (trademark)
Reference materials
Room temperature
Temperature
Temperature dependence
Thermal conductivity
Thermodynamic properties
Thermodynamics
title Investigation and Optimization of the Hot Disk Method for Thermal Conductivity Measurements up to 750 °C
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T09%3A48%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20and%20Optimization%20of%20the%20Hot%20Disk%20Method%20for%20Thermal%20Conductivity%20Measurements%20up%20to%20750%C2%A0%C2%B0C&rft.jtitle=International%20journal%20of%20thermophysics&rft.au=Heisig,%20Lisa-Marie&rft.date=2023-06-01&rft.volume=44&rft.issue=6&rft.artnum=82&rft.issn=0195-928X&rft.eissn=1572-9567&rft_id=info:doi/10.1007/s10765-023-03190-6&rft_dat=%3Cproquest_cross%3E2800198873%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2800198873&rft_id=info:pmid/&rfr_iscdi=true