Invariant Measures for Discontinuous Skew-Product Actions of Amenable Semigroups and Some Ergodic Results
In this paper, for skew-product actions (SPAs) of amenable semigroups (and commutative semigroups) with discontinuity from the point of view of topology, we establish the Bogolyubov–Krylov theorem for the existence of invariant Borel probability measures. In particular, we obtain uniform and semi-un...
Gespeichert in:
Veröffentlicht in: | Bulletin of the Malaysian Mathematical Sciences Society 2023-05, Vol.46 (3), Article 103 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, for skew-product actions (SPAs) of amenable semigroups (and commutative semigroups) with discontinuity from the point of view of topology, we establish the Bogolyubov–Krylov theorem for the existence of invariant Borel probability measures. In particular, we obtain uniform and semi-uniform ergodic theorems for SPAs of amenable semigroups. |
---|---|
ISSN: | 0126-6705 2180-4206 |
DOI: | 10.1007/s40840-023-01496-0 |