Invariant Measures for Discontinuous Skew-Product Actions of Amenable Semigroups and Some Ergodic Results

In this paper, for skew-product actions (SPAs) of amenable semigroups (and commutative semigroups) with discontinuity from the point of view of topology, we establish the Bogolyubov–Krylov theorem for the existence of invariant Borel probability measures. In particular, we obtain uniform and semi-un...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of the Malaysian Mathematical Sciences Society 2023-05, Vol.46 (3), Article 103
Hauptverfasser: Jafari, Meysam, Sahleh, Abbas, Tootkaboni, Mohammad Akbari
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, for skew-product actions (SPAs) of amenable semigroups (and commutative semigroups) with discontinuity from the point of view of topology, we establish the Bogolyubov–Krylov theorem for the existence of invariant Borel probability measures. In particular, we obtain uniform and semi-uniform ergodic theorems for SPAs of amenable semigroups.
ISSN:0126-6705
2180-4206
DOI:10.1007/s40840-023-01496-0