Engineering Multiple Microstructural Defects for Record‐Breaking Thermoelectric Properties of Chalcopyrite Cu1‐xAgxGaTe2

Defect engineering for vacancies, holes, nano precipitates, dislocations, and strain are efficient means of suppressing lattice thermal conductivity. Multiple microstructural defects are successfully designed in Cu1‐xAgxGaTe2 (0 ≤ x ≤ 0.5) solid solutions through high‐ratio alloying and vibratory ba...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2023-04, Vol.19 (15), p.n/a
Hauptverfasser: Huang, Lulu, Li, Yuanyue, Sha, Shengmao, Ge, Bangzhi, Wu, Yucheng, Yan, Jian, Kong, Yuan, Zhang, Jian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 15
container_start_page
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 19
creator Huang, Lulu
Li, Yuanyue
Sha, Shengmao
Ge, Bangzhi
Wu, Yucheng
Yan, Jian
Kong, Yuan
Zhang, Jian
description Defect engineering for vacancies, holes, nano precipitates, dislocations, and strain are efficient means of suppressing lattice thermal conductivity. Multiple microstructural defects are successfully designed in Cu1‐xAgxGaTe2 (0 ≤ x ≤ 0.5) solid solutions through high‐ratio alloying and vibratory ball milling, to achieve ultra‐low thermal conductivity and record‐breaking thermoelectric performance. Extremely low total thermal conductivities of 1.28 W m−1 K−1 at 300 K and 0.40 W m−1 K−1 at 873 K for the Cu0.5Ag0.5GaTe2 are observed, which are ≈79% and ≈58% lower than that of the CuGaTe2 matrix. Multiple phonon scattering mechanisms are collectively responsible for the reduction of thermal conductivity in this work. On one hand, large amounts of nano precipitates and dislocations are formed via vibrating ball milling followed by the low‐temperature hot press, which can enhance phonon scattering. On the other hand, the difference in atomic sizes, distorted chemical bonds, elements fluctuation, and strained domains are caused by the high substitution ratio of Ag and also function as a center for the strong phonon scattering. As a result, the Cu0.7Ag0.3GaTe2 exhibits a record high ZTmax of ≈1.73 at 873 K and ZTave of ≈0.69 between 300–873 K, which are the highest values of CuGaTe2‐based thermoelectric materials. The multiple microstructural defects in Cu1‐xAgxGaTe2 (x = 0–0.5) solid solutions are successfully designed through high ratio alloying and high energy vibratory ball milling, which to achieve ultra‐low thermal conductivity and record‐breaking thermoelectric performance.
doi_str_mv 10.1002/smll.202206865
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2799936933</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2799936933</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2335-59416f5ee08c3ee230a578c16a57d3cf011d7e1d74a5497e98be6728af864ecd3</originalsourceid><addsrcrecordid>eNo9kM1Kw0AUhQdRsFa3rgdcp85PMsksa6xVSFG0rsM4uWmnTjNxkmALLnwEn9EnMaXSxeXcC9-5Bw5Cl5SMKCHsullbO2KEMSISER2hARWUByJh8viwU3KKzppmRQinLIwH6GtSLUwF4E21wLPOtqa2gGdGe9e0vtNt55XFt1CCbhtcOo-fQTtf_H7_3HhQ7zvbfAl-7cD2iDcaP3lXg28NNNiVOF0qq1299aYFnHa0N27Gi81UzYGdo5NS2QYu_nWIXu8m8_Q-yB6nD-k4C2rGeRREMqSijABIojkA40RFcaKp6KXguiSUFjH0E6oolDHI5A1EzBJVJiIEXfAhutr_rb376KBp85XrfNVH5iyWUnIhOe8puac-jYVtXnuzVn6bU5Lv6s139eaHevOXWZYdLv4HG1Z1LQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2799936933</pqid></control><display><type>article</type><title>Engineering Multiple Microstructural Defects for Record‐Breaking Thermoelectric Properties of Chalcopyrite Cu1‐xAgxGaTe2</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Huang, Lulu ; Li, Yuanyue ; Sha, Shengmao ; Ge, Bangzhi ; Wu, Yucheng ; Yan, Jian ; Kong, Yuan ; Zhang, Jian</creator><creatorcontrib>Huang, Lulu ; Li, Yuanyue ; Sha, Shengmao ; Ge, Bangzhi ; Wu, Yucheng ; Yan, Jian ; Kong, Yuan ; Zhang, Jian</creatorcontrib><description>Defect engineering for vacancies, holes, nano precipitates, dislocations, and strain are efficient means of suppressing lattice thermal conductivity. Multiple microstructural defects are successfully designed in Cu1‐xAgxGaTe2 (0 ≤ x ≤ 0.5) solid solutions through high‐ratio alloying and vibratory ball milling, to achieve ultra‐low thermal conductivity and record‐breaking thermoelectric performance. Extremely low total thermal conductivities of 1.28 W m−1 K−1 at 300 K and 0.40 W m−1 K−1 at 873 K for the Cu0.5Ag0.5GaTe2 are observed, which are ≈79% and ≈58% lower than that of the CuGaTe2 matrix. Multiple phonon scattering mechanisms are collectively responsible for the reduction of thermal conductivity in this work. On one hand, large amounts of nano precipitates and dislocations are formed via vibrating ball milling followed by the low‐temperature hot press, which can enhance phonon scattering. On the other hand, the difference in atomic sizes, distorted chemical bonds, elements fluctuation, and strained domains are caused by the high substitution ratio of Ag and also function as a center for the strong phonon scattering. As a result, the Cu0.7Ag0.3GaTe2 exhibits a record high ZTmax of ≈1.73 at 873 K and ZTave of ≈0.69 between 300–873 K, which are the highest values of CuGaTe2‐based thermoelectric materials. The multiple microstructural defects in Cu1‐xAgxGaTe2 (x = 0–0.5) solid solutions are successfully designed through high ratio alloying and high energy vibratory ball milling, which to achieve ultra‐low thermal conductivity and record‐breaking thermoelectric performance.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202206865</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Ball milling ; Chalcopyrite ; Chemical bonds ; Conductivity ; CuGaTe 2 ; Defects ; density functional theory (DFT) calculations ; Dislocations ; Heat conductivity ; Heat transfer ; multiple microstructural defects ; Nanotechnology ; Phonons ; Precipitates ; Scattering ; Solid solutions ; Thermal conductivity ; Thermoelectric materials ; thermoelectric properties</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2023-04, Vol.19 (15), p.n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-6791-8949</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202206865$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202206865$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27922,27923,45572,45573</link.rule.ids></links><search><creatorcontrib>Huang, Lulu</creatorcontrib><creatorcontrib>Li, Yuanyue</creatorcontrib><creatorcontrib>Sha, Shengmao</creatorcontrib><creatorcontrib>Ge, Bangzhi</creatorcontrib><creatorcontrib>Wu, Yucheng</creatorcontrib><creatorcontrib>Yan, Jian</creatorcontrib><creatorcontrib>Kong, Yuan</creatorcontrib><creatorcontrib>Zhang, Jian</creatorcontrib><title>Engineering Multiple Microstructural Defects for Record‐Breaking Thermoelectric Properties of Chalcopyrite Cu1‐xAgxGaTe2</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><description>Defect engineering for vacancies, holes, nano precipitates, dislocations, and strain are efficient means of suppressing lattice thermal conductivity. Multiple microstructural defects are successfully designed in Cu1‐xAgxGaTe2 (0 ≤ x ≤ 0.5) solid solutions through high‐ratio alloying and vibratory ball milling, to achieve ultra‐low thermal conductivity and record‐breaking thermoelectric performance. Extremely low total thermal conductivities of 1.28 W m−1 K−1 at 300 K and 0.40 W m−1 K−1 at 873 K for the Cu0.5Ag0.5GaTe2 are observed, which are ≈79% and ≈58% lower than that of the CuGaTe2 matrix. Multiple phonon scattering mechanisms are collectively responsible for the reduction of thermal conductivity in this work. On one hand, large amounts of nano precipitates and dislocations are formed via vibrating ball milling followed by the low‐temperature hot press, which can enhance phonon scattering. On the other hand, the difference in atomic sizes, distorted chemical bonds, elements fluctuation, and strained domains are caused by the high substitution ratio of Ag and also function as a center for the strong phonon scattering. As a result, the Cu0.7Ag0.3GaTe2 exhibits a record high ZTmax of ≈1.73 at 873 K and ZTave of ≈0.69 between 300–873 K, which are the highest values of CuGaTe2‐based thermoelectric materials. The multiple microstructural defects in Cu1‐xAgxGaTe2 (x = 0–0.5) solid solutions are successfully designed through high ratio alloying and high energy vibratory ball milling, which to achieve ultra‐low thermal conductivity and record‐breaking thermoelectric performance.</description><subject>Ball milling</subject><subject>Chalcopyrite</subject><subject>Chemical bonds</subject><subject>Conductivity</subject><subject>CuGaTe 2</subject><subject>Defects</subject><subject>density functional theory (DFT) calculations</subject><subject>Dislocations</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>multiple microstructural defects</subject><subject>Nanotechnology</subject><subject>Phonons</subject><subject>Precipitates</subject><subject>Scattering</subject><subject>Solid solutions</subject><subject>Thermal conductivity</subject><subject>Thermoelectric materials</subject><subject>thermoelectric properties</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kM1Kw0AUhQdRsFa3rgdcp85PMsksa6xVSFG0rsM4uWmnTjNxkmALLnwEn9EnMaXSxeXcC9-5Bw5Cl5SMKCHsullbO2KEMSISER2hARWUByJh8viwU3KKzppmRQinLIwH6GtSLUwF4E21wLPOtqa2gGdGe9e0vtNt55XFt1CCbhtcOo-fQTtf_H7_3HhQ7zvbfAl-7cD2iDcaP3lXg28NNNiVOF0qq1299aYFnHa0N27Gi81UzYGdo5NS2QYu_nWIXu8m8_Q-yB6nD-k4C2rGeRREMqSijABIojkA40RFcaKp6KXguiSUFjH0E6oolDHI5A1EzBJVJiIEXfAhutr_rb376KBp85XrfNVH5iyWUnIhOe8puac-jYVtXnuzVn6bU5Lv6s139eaHevOXWZYdLv4HG1Z1LQ</recordid><startdate>20230412</startdate><enddate>20230412</enddate><creator>Huang, Lulu</creator><creator>Li, Yuanyue</creator><creator>Sha, Shengmao</creator><creator>Ge, Bangzhi</creator><creator>Wu, Yucheng</creator><creator>Yan, Jian</creator><creator>Kong, Yuan</creator><creator>Zhang, Jian</creator><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6791-8949</orcidid></search><sort><creationdate>20230412</creationdate><title>Engineering Multiple Microstructural Defects for Record‐Breaking Thermoelectric Properties of Chalcopyrite Cu1‐xAgxGaTe2</title><author>Huang, Lulu ; Li, Yuanyue ; Sha, Shengmao ; Ge, Bangzhi ; Wu, Yucheng ; Yan, Jian ; Kong, Yuan ; Zhang, Jian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2335-59416f5ee08c3ee230a578c16a57d3cf011d7e1d74a5497e98be6728af864ecd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Ball milling</topic><topic>Chalcopyrite</topic><topic>Chemical bonds</topic><topic>Conductivity</topic><topic>CuGaTe 2</topic><topic>Defects</topic><topic>density functional theory (DFT) calculations</topic><topic>Dislocations</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>multiple microstructural defects</topic><topic>Nanotechnology</topic><topic>Phonons</topic><topic>Precipitates</topic><topic>Scattering</topic><topic>Solid solutions</topic><topic>Thermal conductivity</topic><topic>Thermoelectric materials</topic><topic>thermoelectric properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Lulu</creatorcontrib><creatorcontrib>Li, Yuanyue</creatorcontrib><creatorcontrib>Sha, Shengmao</creatorcontrib><creatorcontrib>Ge, Bangzhi</creatorcontrib><creatorcontrib>Wu, Yucheng</creatorcontrib><creatorcontrib>Yan, Jian</creatorcontrib><creatorcontrib>Kong, Yuan</creatorcontrib><creatorcontrib>Zhang, Jian</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Lulu</au><au>Li, Yuanyue</au><au>Sha, Shengmao</au><au>Ge, Bangzhi</au><au>Wu, Yucheng</au><au>Yan, Jian</au><au>Kong, Yuan</au><au>Zhang, Jian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineering Multiple Microstructural Defects for Record‐Breaking Thermoelectric Properties of Chalcopyrite Cu1‐xAgxGaTe2</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><date>2023-04-12</date><risdate>2023</risdate><volume>19</volume><issue>15</issue><epage>n/a</epage><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Defect engineering for vacancies, holes, nano precipitates, dislocations, and strain are efficient means of suppressing lattice thermal conductivity. Multiple microstructural defects are successfully designed in Cu1‐xAgxGaTe2 (0 ≤ x ≤ 0.5) solid solutions through high‐ratio alloying and vibratory ball milling, to achieve ultra‐low thermal conductivity and record‐breaking thermoelectric performance. Extremely low total thermal conductivities of 1.28 W m−1 K−1 at 300 K and 0.40 W m−1 K−1 at 873 K for the Cu0.5Ag0.5GaTe2 are observed, which are ≈79% and ≈58% lower than that of the CuGaTe2 matrix. Multiple phonon scattering mechanisms are collectively responsible for the reduction of thermal conductivity in this work. On one hand, large amounts of nano precipitates and dislocations are formed via vibrating ball milling followed by the low‐temperature hot press, which can enhance phonon scattering. On the other hand, the difference in atomic sizes, distorted chemical bonds, elements fluctuation, and strained domains are caused by the high substitution ratio of Ag and also function as a center for the strong phonon scattering. As a result, the Cu0.7Ag0.3GaTe2 exhibits a record high ZTmax of ≈1.73 at 873 K and ZTave of ≈0.69 between 300–873 K, which are the highest values of CuGaTe2‐based thermoelectric materials. The multiple microstructural defects in Cu1‐xAgxGaTe2 (x = 0–0.5) solid solutions are successfully designed through high ratio alloying and high energy vibratory ball milling, which to achieve ultra‐low thermal conductivity and record‐breaking thermoelectric performance.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/smll.202206865</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-6791-8949</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2023-04, Vol.19 (15), p.n/a
issn 1613-6810
1613-6829
language eng
recordid cdi_proquest_journals_2799936933
source Wiley Online Library - AutoHoldings Journals
subjects Ball milling
Chalcopyrite
Chemical bonds
Conductivity
CuGaTe 2
Defects
density functional theory (DFT) calculations
Dislocations
Heat conductivity
Heat transfer
multiple microstructural defects
Nanotechnology
Phonons
Precipitates
Scattering
Solid solutions
Thermal conductivity
Thermoelectric materials
thermoelectric properties
title Engineering Multiple Microstructural Defects for Record‐Breaking Thermoelectric Properties of Chalcopyrite Cu1‐xAgxGaTe2
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T14%3A49%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineering%20Multiple%20Microstructural%20Defects%20for%20Record%E2%80%90Breaking%20Thermoelectric%20Properties%20of%20Chalcopyrite%20Cu1%E2%80%90xAgxGaTe2&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Huang,%20Lulu&rft.date=2023-04-12&rft.volume=19&rft.issue=15&rft.epage=n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202206865&rft_dat=%3Cproquest_wiley%3E2799936933%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2799936933&rft_id=info:pmid/&rfr_iscdi=true