Recent advances in the application of deep learning for fault diagnosis of rotating machinery using vibration signals
Vibration measurement and monitoring are essential in a wide variety of applications. Vibration measurements are critical for diagnosing industrial machinery malfunctions because they provide information about the condition of the rotating equipment. Vibration analysis is considered the most effecti...
Gespeichert in:
Veröffentlicht in: | The Artificial intelligence review 2023-05, Vol.56 (5), p.4667-4709 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4709 |
---|---|
container_issue | 5 |
container_start_page | 4667 |
container_title | The Artificial intelligence review |
container_volume | 56 |
creator | Tama, Bayu Adhi Vania, Malinda Lee, Seungchul Lim, Sunghoon |
description | Vibration measurement and monitoring are essential in a wide variety of applications. Vibration measurements are critical for diagnosing industrial machinery malfunctions because they provide information about the condition of the rotating equipment. Vibration analysis is considered the most effective method for predictive maintenance because it is used to troubleshoot instantaneous faults as well as periodic maintenance. Numerous studies conducted in this vein have been published in a variety of outlets. This review documents data-driven and recently published deep learning techniques for vibration-based condition monitoring. Numerous studies were obtained from two reputable indexing databases, Web of Science and Scopus. Following a thorough review, 59 studies were selected for synthesis. The selected studies are then systematically discussed to provide researchers with an in-depth view of deep learning-based fault diagnosis methods based on vibration signals. Additionally, a few remarks regarding future research directions are made, including graph-based neural networks, physics-informed ML, and a transformer convolutional network-based fault diagnosis method. |
doi_str_mv | 10.1007/s10462-022-10293-3 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2799913206</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A745398194</galeid><sourcerecordid>A745398194</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-1e0884c0ac9bf858975aa4044cff532e35c306dd98a09a0af02bf3d59eb453393</originalsourceid><addsrcrecordid>eNp9kU9r3DAQxUVJoZu0X6AnQc5OR3-8to4hJE0hEAjtWczKI0fBK7mSHci3r7YO9FbmMMzM-z0GHmNfBVwJgO5bEaD3sgEpGwHSqEZ9YDvRdqrp6v6M7UDuTSN7KT6x81JeAKCVWu3Y-kSO4sJxeMXoqPAQ-fJMHOd5Cg6XkCJPng9EM58Icwxx5D5l7nGdFj4EHGMqoZxEOS0VqPcjuucQKb_xtZzm13DIm1UJY8SpfGYffW305b1fsF93tz9v7puHx-8_bq4fGqdBLo0g6HvtAJ05-L7tTdciatDaed8qSap1CvbDYHoEg4Ae5MGroTV00K1SRl2wy813zun3SmWxL2nNpw-s7IwxQknYV9XVphpxIhuiT0tGV2ugY3Apkg91f91VT9MLoysgN8DlVEomb-ccjpjfrAB7ysNuediah_2bh1UVUhtUqjiOlP_98h_qD3rXjuk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2799913206</pqid></control><display><type>article</type><title>Recent advances in the application of deep learning for fault diagnosis of rotating machinery using vibration signals</title><source>SpringerLink Journals - AutoHoldings</source><creator>Tama, Bayu Adhi ; Vania, Malinda ; Lee, Seungchul ; Lim, Sunghoon</creator><creatorcontrib>Tama, Bayu Adhi ; Vania, Malinda ; Lee, Seungchul ; Lim, Sunghoon</creatorcontrib><description>Vibration measurement and monitoring are essential in a wide variety of applications. Vibration measurements are critical for diagnosing industrial machinery malfunctions because they provide information about the condition of the rotating equipment. Vibration analysis is considered the most effective method for predictive maintenance because it is used to troubleshoot instantaneous faults as well as periodic maintenance. Numerous studies conducted in this vein have been published in a variety of outlets. This review documents data-driven and recently published deep learning techniques for vibration-based condition monitoring. Numerous studies were obtained from two reputable indexing databases, Web of Science and Scopus. Following a thorough review, 59 studies were selected for synthesis. The selected studies are then systematically discussed to provide researchers with an in-depth view of deep learning-based fault diagnosis methods based on vibration signals. Additionally, a few remarks regarding future research directions are made, including graph-based neural networks, physics-informed ML, and a transformer convolutional network-based fault diagnosis method.</description><identifier>ISSN: 0269-2821</identifier><identifier>EISSN: 1573-7462</identifier><identifier>DOI: 10.1007/s10462-022-10293-3</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Artificial Intelligence ; Computer Science ; Condition monitoring ; Deep learning ; Fault diagnosis ; Machinery ; Magneto-electric machines ; Neural networks ; Predictive maintenance ; Rotating machinery ; Technology application ; Troubleshooting ; Vibration analysis ; Vibration measurement ; Vibration monitoring</subject><ispartof>The Artificial intelligence review, 2023-05, Vol.56 (5), p.4667-4709</ispartof><rights>The Author(s) 2022</rights><rights>COPYRIGHT 2023 Springer</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-1e0884c0ac9bf858975aa4044cff532e35c306dd98a09a0af02bf3d59eb453393</citedby><cites>FETCH-LOGICAL-c402t-1e0884c0ac9bf858975aa4044cff532e35c306dd98a09a0af02bf3d59eb453393</cites><orcidid>0000-0001-9534-7397</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10462-022-10293-3$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10462-022-10293-3$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Tama, Bayu Adhi</creatorcontrib><creatorcontrib>Vania, Malinda</creatorcontrib><creatorcontrib>Lee, Seungchul</creatorcontrib><creatorcontrib>Lim, Sunghoon</creatorcontrib><title>Recent advances in the application of deep learning for fault diagnosis of rotating machinery using vibration signals</title><title>The Artificial intelligence review</title><addtitle>Artif Intell Rev</addtitle><description>Vibration measurement and monitoring are essential in a wide variety of applications. Vibration measurements are critical for diagnosing industrial machinery malfunctions because they provide information about the condition of the rotating equipment. Vibration analysis is considered the most effective method for predictive maintenance because it is used to troubleshoot instantaneous faults as well as periodic maintenance. Numerous studies conducted in this vein have been published in a variety of outlets. This review documents data-driven and recently published deep learning techniques for vibration-based condition monitoring. Numerous studies were obtained from two reputable indexing databases, Web of Science and Scopus. Following a thorough review, 59 studies were selected for synthesis. The selected studies are then systematically discussed to provide researchers with an in-depth view of deep learning-based fault diagnosis methods based on vibration signals. Additionally, a few remarks regarding future research directions are made, including graph-based neural networks, physics-informed ML, and a transformer convolutional network-based fault diagnosis method.</description><subject>Artificial Intelligence</subject><subject>Computer Science</subject><subject>Condition monitoring</subject><subject>Deep learning</subject><subject>Fault diagnosis</subject><subject>Machinery</subject><subject>Magneto-electric machines</subject><subject>Neural networks</subject><subject>Predictive maintenance</subject><subject>Rotating machinery</subject><subject>Technology application</subject><subject>Troubleshooting</subject><subject>Vibration analysis</subject><subject>Vibration measurement</subject><subject>Vibration monitoring</subject><issn>0269-2821</issn><issn>1573-7462</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU9r3DAQxUVJoZu0X6AnQc5OR3-8to4hJE0hEAjtWczKI0fBK7mSHci3r7YO9FbmMMzM-z0GHmNfBVwJgO5bEaD3sgEpGwHSqEZ9YDvRdqrp6v6M7UDuTSN7KT6x81JeAKCVWu3Y-kSO4sJxeMXoqPAQ-fJMHOd5Cg6XkCJPng9EM58Icwxx5D5l7nGdFj4EHGMqoZxEOS0VqPcjuucQKb_xtZzm13DIm1UJY8SpfGYffW305b1fsF93tz9v7puHx-8_bq4fGqdBLo0g6HvtAJ05-L7tTdciatDaed8qSap1CvbDYHoEg4Ae5MGroTV00K1SRl2wy813zun3SmWxL2nNpw-s7IwxQknYV9XVphpxIhuiT0tGV2ugY3Apkg91f91VT9MLoysgN8DlVEomb-ccjpjfrAB7ysNuediah_2bh1UVUhtUqjiOlP_98h_qD3rXjuk</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Tama, Bayu Adhi</creator><creator>Vania, Malinda</creator><creator>Lee, Seungchul</creator><creator>Lim, Sunghoon</creator><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CNYFK</scope><scope>DWQXO</scope><scope>E3H</scope><scope>F2A</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M1O</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-9534-7397</orcidid></search><sort><creationdate>20230501</creationdate><title>Recent advances in the application of deep learning for fault diagnosis of rotating machinery using vibration signals</title><author>Tama, Bayu Adhi ; Vania, Malinda ; Lee, Seungchul ; Lim, Sunghoon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-1e0884c0ac9bf858975aa4044cff532e35c306dd98a09a0af02bf3d59eb453393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial Intelligence</topic><topic>Computer Science</topic><topic>Condition monitoring</topic><topic>Deep learning</topic><topic>Fault diagnosis</topic><topic>Machinery</topic><topic>Magneto-electric machines</topic><topic>Neural networks</topic><topic>Predictive maintenance</topic><topic>Rotating machinery</topic><topic>Technology application</topic><topic>Troubleshooting</topic><topic>Vibration analysis</topic><topic>Vibration measurement</topic><topic>Vibration monitoring</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tama, Bayu Adhi</creatorcontrib><creatorcontrib>Vania, Malinda</creatorcontrib><creatorcontrib>Lee, Seungchul</creatorcontrib><creatorcontrib>Lim, Sunghoon</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Library & Information Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Library & Information Sciences Abstracts (LISA)</collection><collection>Library & Information Science Abstracts (LISA)</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Library Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><jtitle>The Artificial intelligence review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tama, Bayu Adhi</au><au>Vania, Malinda</au><au>Lee, Seungchul</au><au>Lim, Sunghoon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recent advances in the application of deep learning for fault diagnosis of rotating machinery using vibration signals</atitle><jtitle>The Artificial intelligence review</jtitle><stitle>Artif Intell Rev</stitle><date>2023-05-01</date><risdate>2023</risdate><volume>56</volume><issue>5</issue><spage>4667</spage><epage>4709</epage><pages>4667-4709</pages><issn>0269-2821</issn><eissn>1573-7462</eissn><abstract>Vibration measurement and monitoring are essential in a wide variety of applications. Vibration measurements are critical for diagnosing industrial machinery malfunctions because they provide information about the condition of the rotating equipment. Vibration analysis is considered the most effective method for predictive maintenance because it is used to troubleshoot instantaneous faults as well as periodic maintenance. Numerous studies conducted in this vein have been published in a variety of outlets. This review documents data-driven and recently published deep learning techniques for vibration-based condition monitoring. Numerous studies were obtained from two reputable indexing databases, Web of Science and Scopus. Following a thorough review, 59 studies were selected for synthesis. The selected studies are then systematically discussed to provide researchers with an in-depth view of deep learning-based fault diagnosis methods based on vibration signals. Additionally, a few remarks regarding future research directions are made, including graph-based neural networks, physics-informed ML, and a transformer convolutional network-based fault diagnosis method.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10462-022-10293-3</doi><tpages>43</tpages><orcidid>https://orcid.org/0000-0001-9534-7397</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0269-2821 |
ispartof | The Artificial intelligence review, 2023-05, Vol.56 (5), p.4667-4709 |
issn | 0269-2821 1573-7462 |
language | eng |
recordid | cdi_proquest_journals_2799913206 |
source | SpringerLink Journals - AutoHoldings |
subjects | Artificial Intelligence Computer Science Condition monitoring Deep learning Fault diagnosis Machinery Magneto-electric machines Neural networks Predictive maintenance Rotating machinery Technology application Troubleshooting Vibration analysis Vibration measurement Vibration monitoring |
title | Recent advances in the application of deep learning for fault diagnosis of rotating machinery using vibration signals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T20%3A13%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recent%20advances%20in%20the%20application%20of%20deep%20learning%20for%20fault%20diagnosis%20of%20rotating%20machinery%20using%20vibration%20signals&rft.jtitle=The%20Artificial%20intelligence%20review&rft.au=Tama,%20Bayu%20Adhi&rft.date=2023-05-01&rft.volume=56&rft.issue=5&rft.spage=4667&rft.epage=4709&rft.pages=4667-4709&rft.issn=0269-2821&rft.eissn=1573-7462&rft_id=info:doi/10.1007/s10462-022-10293-3&rft_dat=%3Cgale_proqu%3EA745398194%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2799913206&rft_id=info:pmid/&rft_galeid=A745398194&rfr_iscdi=true |