Recent advances in the application of deep learning for fault diagnosis of rotating machinery using vibration signals

Vibration measurement and monitoring are essential in a wide variety of applications. Vibration measurements are critical for diagnosing industrial machinery malfunctions because they provide information about the condition of the rotating equipment. Vibration analysis is considered the most effecti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Artificial intelligence review 2023-05, Vol.56 (5), p.4667-4709
Hauptverfasser: Tama, Bayu Adhi, Vania, Malinda, Lee, Seungchul, Lim, Sunghoon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4709
container_issue 5
container_start_page 4667
container_title The Artificial intelligence review
container_volume 56
creator Tama, Bayu Adhi
Vania, Malinda
Lee, Seungchul
Lim, Sunghoon
description Vibration measurement and monitoring are essential in a wide variety of applications. Vibration measurements are critical for diagnosing industrial machinery malfunctions because they provide information about the condition of the rotating equipment. Vibration analysis is considered the most effective method for predictive maintenance because it is used to troubleshoot instantaneous faults as well as periodic maintenance. Numerous studies conducted in this vein have been published in a variety of outlets. This review documents data-driven and recently published deep learning techniques for vibration-based condition monitoring. Numerous studies were obtained from two reputable indexing databases, Web of Science and Scopus. Following a thorough review, 59 studies were selected for synthesis. The selected studies are then systematically discussed to provide researchers with an in-depth view of deep learning-based fault diagnosis methods based on vibration signals. Additionally, a few remarks regarding future research directions are made, including graph-based neural networks, physics-informed ML, and a transformer convolutional network-based fault diagnosis method.
doi_str_mv 10.1007/s10462-022-10293-3
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2799913206</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A745398194</galeid><sourcerecordid>A745398194</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-1e0884c0ac9bf858975aa4044cff532e35c306dd98a09a0af02bf3d59eb453393</originalsourceid><addsrcrecordid>eNp9kU9r3DAQxUVJoZu0X6AnQc5OR3-8to4hJE0hEAjtWczKI0fBK7mSHci3r7YO9FbmMMzM-z0GHmNfBVwJgO5bEaD3sgEpGwHSqEZ9YDvRdqrp6v6M7UDuTSN7KT6x81JeAKCVWu3Y-kSO4sJxeMXoqPAQ-fJMHOd5Cg6XkCJPng9EM58Icwxx5D5l7nGdFj4EHGMqoZxEOS0VqPcjuucQKb_xtZzm13DIm1UJY8SpfGYffW305b1fsF93tz9v7puHx-8_bq4fGqdBLo0g6HvtAJ05-L7tTdciatDaed8qSap1CvbDYHoEg4Ae5MGroTV00K1SRl2wy813zun3SmWxL2nNpw-s7IwxQknYV9XVphpxIhuiT0tGV2ugY3Apkg91f91VT9MLoysgN8DlVEomb-ccjpjfrAB7ysNuediah_2bh1UVUhtUqjiOlP_98h_qD3rXjuk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2799913206</pqid></control><display><type>article</type><title>Recent advances in the application of deep learning for fault diagnosis of rotating machinery using vibration signals</title><source>SpringerLink Journals - AutoHoldings</source><creator>Tama, Bayu Adhi ; Vania, Malinda ; Lee, Seungchul ; Lim, Sunghoon</creator><creatorcontrib>Tama, Bayu Adhi ; Vania, Malinda ; Lee, Seungchul ; Lim, Sunghoon</creatorcontrib><description>Vibration measurement and monitoring are essential in a wide variety of applications. Vibration measurements are critical for diagnosing industrial machinery malfunctions because they provide information about the condition of the rotating equipment. Vibration analysis is considered the most effective method for predictive maintenance because it is used to troubleshoot instantaneous faults as well as periodic maintenance. Numerous studies conducted in this vein have been published in a variety of outlets. This review documents data-driven and recently published deep learning techniques for vibration-based condition monitoring. Numerous studies were obtained from two reputable indexing databases, Web of Science and Scopus. Following a thorough review, 59 studies were selected for synthesis. The selected studies are then systematically discussed to provide researchers with an in-depth view of deep learning-based fault diagnosis methods based on vibration signals. Additionally, a few remarks regarding future research directions are made, including graph-based neural networks, physics-informed ML, and a transformer convolutional network-based fault diagnosis method.</description><identifier>ISSN: 0269-2821</identifier><identifier>EISSN: 1573-7462</identifier><identifier>DOI: 10.1007/s10462-022-10293-3</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Artificial Intelligence ; Computer Science ; Condition monitoring ; Deep learning ; Fault diagnosis ; Machinery ; Magneto-electric machines ; Neural networks ; Predictive maintenance ; Rotating machinery ; Technology application ; Troubleshooting ; Vibration analysis ; Vibration measurement ; Vibration monitoring</subject><ispartof>The Artificial intelligence review, 2023-05, Vol.56 (5), p.4667-4709</ispartof><rights>The Author(s) 2022</rights><rights>COPYRIGHT 2023 Springer</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-1e0884c0ac9bf858975aa4044cff532e35c306dd98a09a0af02bf3d59eb453393</citedby><cites>FETCH-LOGICAL-c402t-1e0884c0ac9bf858975aa4044cff532e35c306dd98a09a0af02bf3d59eb453393</cites><orcidid>0000-0001-9534-7397</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10462-022-10293-3$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10462-022-10293-3$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Tama, Bayu Adhi</creatorcontrib><creatorcontrib>Vania, Malinda</creatorcontrib><creatorcontrib>Lee, Seungchul</creatorcontrib><creatorcontrib>Lim, Sunghoon</creatorcontrib><title>Recent advances in the application of deep learning for fault diagnosis of rotating machinery using vibration signals</title><title>The Artificial intelligence review</title><addtitle>Artif Intell Rev</addtitle><description>Vibration measurement and monitoring are essential in a wide variety of applications. Vibration measurements are critical for diagnosing industrial machinery malfunctions because they provide information about the condition of the rotating equipment. Vibration analysis is considered the most effective method for predictive maintenance because it is used to troubleshoot instantaneous faults as well as periodic maintenance. Numerous studies conducted in this vein have been published in a variety of outlets. This review documents data-driven and recently published deep learning techniques for vibration-based condition monitoring. Numerous studies were obtained from two reputable indexing databases, Web of Science and Scopus. Following a thorough review, 59 studies were selected for synthesis. The selected studies are then systematically discussed to provide researchers with an in-depth view of deep learning-based fault diagnosis methods based on vibration signals. Additionally, a few remarks regarding future research directions are made, including graph-based neural networks, physics-informed ML, and a transformer convolutional network-based fault diagnosis method.</description><subject>Artificial Intelligence</subject><subject>Computer Science</subject><subject>Condition monitoring</subject><subject>Deep learning</subject><subject>Fault diagnosis</subject><subject>Machinery</subject><subject>Magneto-electric machines</subject><subject>Neural networks</subject><subject>Predictive maintenance</subject><subject>Rotating machinery</subject><subject>Technology application</subject><subject>Troubleshooting</subject><subject>Vibration analysis</subject><subject>Vibration measurement</subject><subject>Vibration monitoring</subject><issn>0269-2821</issn><issn>1573-7462</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU9r3DAQxUVJoZu0X6AnQc5OR3-8to4hJE0hEAjtWczKI0fBK7mSHci3r7YO9FbmMMzM-z0GHmNfBVwJgO5bEaD3sgEpGwHSqEZ9YDvRdqrp6v6M7UDuTSN7KT6x81JeAKCVWu3Y-kSO4sJxeMXoqPAQ-fJMHOd5Cg6XkCJPng9EM58Icwxx5D5l7nGdFj4EHGMqoZxEOS0VqPcjuucQKb_xtZzm13DIm1UJY8SpfGYffW305b1fsF93tz9v7puHx-8_bq4fGqdBLo0g6HvtAJ05-L7tTdciatDaed8qSap1CvbDYHoEg4Ae5MGroTV00K1SRl2wy813zun3SmWxL2nNpw-s7IwxQknYV9XVphpxIhuiT0tGV2ugY3Apkg91f91VT9MLoysgN8DlVEomb-ccjpjfrAB7ysNuediah_2bh1UVUhtUqjiOlP_98h_qD3rXjuk</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Tama, Bayu Adhi</creator><creator>Vania, Malinda</creator><creator>Lee, Seungchul</creator><creator>Lim, Sunghoon</creator><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CNYFK</scope><scope>DWQXO</scope><scope>E3H</scope><scope>F2A</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M1O</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-9534-7397</orcidid></search><sort><creationdate>20230501</creationdate><title>Recent advances in the application of deep learning for fault diagnosis of rotating machinery using vibration signals</title><author>Tama, Bayu Adhi ; Vania, Malinda ; Lee, Seungchul ; Lim, Sunghoon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-1e0884c0ac9bf858975aa4044cff532e35c306dd98a09a0af02bf3d59eb453393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial Intelligence</topic><topic>Computer Science</topic><topic>Condition monitoring</topic><topic>Deep learning</topic><topic>Fault diagnosis</topic><topic>Machinery</topic><topic>Magneto-electric machines</topic><topic>Neural networks</topic><topic>Predictive maintenance</topic><topic>Rotating machinery</topic><topic>Technology application</topic><topic>Troubleshooting</topic><topic>Vibration analysis</topic><topic>Vibration measurement</topic><topic>Vibration monitoring</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tama, Bayu Adhi</creatorcontrib><creatorcontrib>Vania, Malinda</creatorcontrib><creatorcontrib>Lee, Seungchul</creatorcontrib><creatorcontrib>Lim, Sunghoon</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Library &amp; Information Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Library &amp; Information Sciences Abstracts (LISA)</collection><collection>Library &amp; Information Science Abstracts (LISA)</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Library Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><jtitle>The Artificial intelligence review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tama, Bayu Adhi</au><au>Vania, Malinda</au><au>Lee, Seungchul</au><au>Lim, Sunghoon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recent advances in the application of deep learning for fault diagnosis of rotating machinery using vibration signals</atitle><jtitle>The Artificial intelligence review</jtitle><stitle>Artif Intell Rev</stitle><date>2023-05-01</date><risdate>2023</risdate><volume>56</volume><issue>5</issue><spage>4667</spage><epage>4709</epage><pages>4667-4709</pages><issn>0269-2821</issn><eissn>1573-7462</eissn><abstract>Vibration measurement and monitoring are essential in a wide variety of applications. Vibration measurements are critical for diagnosing industrial machinery malfunctions because they provide information about the condition of the rotating equipment. Vibration analysis is considered the most effective method for predictive maintenance because it is used to troubleshoot instantaneous faults as well as periodic maintenance. Numerous studies conducted in this vein have been published in a variety of outlets. This review documents data-driven and recently published deep learning techniques for vibration-based condition monitoring. Numerous studies were obtained from two reputable indexing databases, Web of Science and Scopus. Following a thorough review, 59 studies were selected for synthesis. The selected studies are then systematically discussed to provide researchers with an in-depth view of deep learning-based fault diagnosis methods based on vibration signals. Additionally, a few remarks regarding future research directions are made, including graph-based neural networks, physics-informed ML, and a transformer convolutional network-based fault diagnosis method.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10462-022-10293-3</doi><tpages>43</tpages><orcidid>https://orcid.org/0000-0001-9534-7397</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0269-2821
ispartof The Artificial intelligence review, 2023-05, Vol.56 (5), p.4667-4709
issn 0269-2821
1573-7462
language eng
recordid cdi_proquest_journals_2799913206
source SpringerLink Journals - AutoHoldings
subjects Artificial Intelligence
Computer Science
Condition monitoring
Deep learning
Fault diagnosis
Machinery
Magneto-electric machines
Neural networks
Predictive maintenance
Rotating machinery
Technology application
Troubleshooting
Vibration analysis
Vibration measurement
Vibration monitoring
title Recent advances in the application of deep learning for fault diagnosis of rotating machinery using vibration signals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T20%3A13%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recent%20advances%20in%20the%20application%20of%20deep%20learning%20for%20fault%20diagnosis%20of%20rotating%20machinery%20using%20vibration%20signals&rft.jtitle=The%20Artificial%20intelligence%20review&rft.au=Tama,%20Bayu%20Adhi&rft.date=2023-05-01&rft.volume=56&rft.issue=5&rft.spage=4667&rft.epage=4709&rft.pages=4667-4709&rft.issn=0269-2821&rft.eissn=1573-7462&rft_id=info:doi/10.1007/s10462-022-10293-3&rft_dat=%3Cgale_proqu%3EA745398194%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2799913206&rft_id=info:pmid/&rft_galeid=A745398194&rfr_iscdi=true