On a multi‐point p$$ p $$‐Laplacian fractional differential equation with generalized fractional derivatives
In the current paper, we intend to check the existence aspects of solutions for a category of the multi‐point boundary value problem (BVP) involving a p$$ p $$‐Laplacian differential operator within the generalized fractional derivatives depending on another function. Based on two fixed point result...
Gespeichert in:
Veröffentlicht in: | Mathematical methods in the applied sciences 2023-05, Vol.46 (7), p.8390-8407 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8407 |
---|---|
container_issue | 7 |
container_start_page | 8390 |
container_title | Mathematical methods in the applied sciences |
container_volume | 46 |
creator | Rezapour, Shahram Abbas, Mohamed I. Etemad, Sina Minh Dien, Nguyen |
description | In the current paper, we intend to check the existence aspects of solutions for a category of the multi‐point boundary value problem (BVP) involving a
p$$ p $$‐Laplacian differential operator within the generalized fractional derivatives depending on another function. Based on two fixed point results attributed to Schaefer and Banach, the desired results are verified. Further, the continuity of solutions in terms of inputs (fractional orders, associated parameters, and appropriate function) is extensively discussed. A simulative example is prepared to demonstrate the applications of the obtained results. |
doi_str_mv | 10.1002/mma.8301 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2799874638</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2799874638</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2231-3d982b5c740accf10a00be8225e429880aaed447e941b64273d20c41557ef57a3</originalsourceid><addsrcrecordid>eNp10M1KAzEQB_AgCtYq-AgBe_CydZLNNtljKX5Bixc9hzQ7qyn71WS3pZ58BJ_RJ3FrvXjwNMzwm2H4E3LJYMwA-E1ZmrGKgR2RAYM0jZiQk2MyACYhEpyJU3IWwgoAFGN8QJqnihpadkXrvj4-m9pVLW1GI9rQ0agfzE1TGOtMRXNvbOvqyhQ0c3mOHqvW9Q2uO7Of061r3-grVuhN4d4x-7OB3m16tsFwTk5yUwS8-K1D8nJ3-zx7iOZP94-z6TyynMcsirNU8WVipQBjbc7AACxRcZ6g4KlSYAxmQkhMBVtOBJdxxsEKliQS80SaeEiuDncbX687DK1e1Z3vnwmayzRVUkxi1avrg7K-DsFjrhvvSuN3moHe56n7PPU-z55GB7p1Be7-dXqxmP74b7HReGI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2799874638</pqid></control><display><type>article</type><title>On a multi‐point p$$ p $$‐Laplacian fractional differential equation with generalized fractional derivatives</title><source>Wiley Online Library All Journals</source><creator>Rezapour, Shahram ; Abbas, Mohamed I. ; Etemad, Sina ; Minh Dien, Nguyen</creator><creatorcontrib>Rezapour, Shahram ; Abbas, Mohamed I. ; Etemad, Sina ; Minh Dien, Nguyen</creatorcontrib><description>In the current paper, we intend to check the existence aspects of solutions for a category of the multi‐point boundary value problem (BVP) involving a
p$$ p $$‐Laplacian differential operator within the generalized fractional derivatives depending on another function. Based on two fixed point results attributed to Schaefer and Banach, the desired results are verified. Further, the continuity of solutions in terms of inputs (fractional orders, associated parameters, and appropriate function) is extensively discussed. A simulative example is prepared to demonstrate the applications of the obtained results.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.8301</identifier><language>eng</language><publisher>Freiburg: Wiley Subscription Services, Inc</publisher><subject>Boundary value problems ; Derivatives ; Differential equations ; fixed point results ; Fractional calculus ; Mathematical analysis ; multi‐point BVP ; Operators (mathematics) ; p‐Laplacian ; the generalized fractional derivative</subject><ispartof>Mathematical methods in the applied sciences, 2023-05, Vol.46 (7), p.8390-8407</ispartof><rights>2022 John Wiley & Sons, Ltd.</rights><rights>2023 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2231-3d982b5c740accf10a00be8225e429880aaed447e941b64273d20c41557ef57a3</citedby><cites>FETCH-LOGICAL-c2231-3d982b5c740accf10a00be8225e429880aaed447e941b64273d20c41557ef57a3</cites><orcidid>0000-0002-1574-1800 ; 0000-0002-3803-8114 ; 0000-0003-2255-7048 ; 0000-0003-3463-2607</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.8301$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.8301$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Rezapour, Shahram</creatorcontrib><creatorcontrib>Abbas, Mohamed I.</creatorcontrib><creatorcontrib>Etemad, Sina</creatorcontrib><creatorcontrib>Minh Dien, Nguyen</creatorcontrib><title>On a multi‐point p$$ p $$‐Laplacian fractional differential equation with generalized fractional derivatives</title><title>Mathematical methods in the applied sciences</title><description>In the current paper, we intend to check the existence aspects of solutions for a category of the multi‐point boundary value problem (BVP) involving a
p$$ p $$‐Laplacian differential operator within the generalized fractional derivatives depending on another function. Based on two fixed point results attributed to Schaefer and Banach, the desired results are verified. Further, the continuity of solutions in terms of inputs (fractional orders, associated parameters, and appropriate function) is extensively discussed. A simulative example is prepared to demonstrate the applications of the obtained results.</description><subject>Boundary value problems</subject><subject>Derivatives</subject><subject>Differential equations</subject><subject>fixed point results</subject><subject>Fractional calculus</subject><subject>Mathematical analysis</subject><subject>multi‐point BVP</subject><subject>Operators (mathematics)</subject><subject>p‐Laplacian</subject><subject>the generalized fractional derivative</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp10M1KAzEQB_AgCtYq-AgBe_CydZLNNtljKX5Bixc9hzQ7qyn71WS3pZ58BJ_RJ3FrvXjwNMzwm2H4E3LJYMwA-E1ZmrGKgR2RAYM0jZiQk2MyACYhEpyJU3IWwgoAFGN8QJqnihpadkXrvj4-m9pVLW1GI9rQ0agfzE1TGOtMRXNvbOvqyhQ0c3mOHqvW9Q2uO7Of061r3-grVuhN4d4x-7OB3m16tsFwTk5yUwS8-K1D8nJ3-zx7iOZP94-z6TyynMcsirNU8WVipQBjbc7AACxRcZ6g4KlSYAxmQkhMBVtOBJdxxsEKliQS80SaeEiuDncbX687DK1e1Z3vnwmayzRVUkxi1avrg7K-DsFjrhvvSuN3moHe56n7PPU-z55GB7p1Be7-dXqxmP74b7HReGI</recordid><startdate>20230515</startdate><enddate>20230515</enddate><creator>Rezapour, Shahram</creator><creator>Abbas, Mohamed I.</creator><creator>Etemad, Sina</creator><creator>Minh Dien, Nguyen</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-1574-1800</orcidid><orcidid>https://orcid.org/0000-0002-3803-8114</orcidid><orcidid>https://orcid.org/0000-0003-2255-7048</orcidid><orcidid>https://orcid.org/0000-0003-3463-2607</orcidid></search><sort><creationdate>20230515</creationdate><title>On a multi‐point p$$ p $$‐Laplacian fractional differential equation with generalized fractional derivatives</title><author>Rezapour, Shahram ; Abbas, Mohamed I. ; Etemad, Sina ; Minh Dien, Nguyen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2231-3d982b5c740accf10a00be8225e429880aaed447e941b64273d20c41557ef57a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Boundary value problems</topic><topic>Derivatives</topic><topic>Differential equations</topic><topic>fixed point results</topic><topic>Fractional calculus</topic><topic>Mathematical analysis</topic><topic>multi‐point BVP</topic><topic>Operators (mathematics)</topic><topic>p‐Laplacian</topic><topic>the generalized fractional derivative</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rezapour, Shahram</creatorcontrib><creatorcontrib>Abbas, Mohamed I.</creatorcontrib><creatorcontrib>Etemad, Sina</creatorcontrib><creatorcontrib>Minh Dien, Nguyen</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rezapour, Shahram</au><au>Abbas, Mohamed I.</au><au>Etemad, Sina</au><au>Minh Dien, Nguyen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On a multi‐point p$$ p $$‐Laplacian fractional differential equation with generalized fractional derivatives</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2023-05-15</date><risdate>2023</risdate><volume>46</volume><issue>7</issue><spage>8390</spage><epage>8407</epage><pages>8390-8407</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>In the current paper, we intend to check the existence aspects of solutions for a category of the multi‐point boundary value problem (BVP) involving a
p$$ p $$‐Laplacian differential operator within the generalized fractional derivatives depending on another function. Based on two fixed point results attributed to Schaefer and Banach, the desired results are verified. Further, the continuity of solutions in terms of inputs (fractional orders, associated parameters, and appropriate function) is extensively discussed. A simulative example is prepared to demonstrate the applications of the obtained results.</abstract><cop>Freiburg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mma.8301</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-1574-1800</orcidid><orcidid>https://orcid.org/0000-0002-3803-8114</orcidid><orcidid>https://orcid.org/0000-0003-2255-7048</orcidid><orcidid>https://orcid.org/0000-0003-3463-2607</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0170-4214 |
ispartof | Mathematical methods in the applied sciences, 2023-05, Vol.46 (7), p.8390-8407 |
issn | 0170-4214 1099-1476 |
language | eng |
recordid | cdi_proquest_journals_2799874638 |
source | Wiley Online Library All Journals |
subjects | Boundary value problems Derivatives Differential equations fixed point results Fractional calculus Mathematical analysis multi‐point BVP Operators (mathematics) p‐Laplacian the generalized fractional derivative |
title | On a multi‐point p$$ p $$‐Laplacian fractional differential equation with generalized fractional derivatives |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T07%3A22%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20a%20multi%E2%80%90point%20p$$%20p%20$$%E2%80%90Laplacian%20fractional%20differential%20equation%20with%20generalized%20fractional%20derivatives&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Rezapour,%20Shahram&rft.date=2023-05-15&rft.volume=46&rft.issue=7&rft.spage=8390&rft.epage=8407&rft.pages=8390-8407&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.8301&rft_dat=%3Cproquest_cross%3E2799874638%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2799874638&rft_id=info:pmid/&rfr_iscdi=true |