On a multi‐point p$$ p $$‐Laplacian fractional differential equation with generalized fractional derivatives

In the current paper, we intend to check the existence aspects of solutions for a category of the multi‐point boundary value problem (BVP) involving a p$$ p $$‐Laplacian differential operator within the generalized fractional derivatives depending on another function. Based on two fixed point result...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 2023-05, Vol.46 (7), p.8390-8407
Hauptverfasser: Rezapour, Shahram, Abbas, Mohamed I., Etemad, Sina, Minh Dien, Nguyen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8407
container_issue 7
container_start_page 8390
container_title Mathematical methods in the applied sciences
container_volume 46
creator Rezapour, Shahram
Abbas, Mohamed I.
Etemad, Sina
Minh Dien, Nguyen
description In the current paper, we intend to check the existence aspects of solutions for a category of the multi‐point boundary value problem (BVP) involving a p$$ p $$‐Laplacian differential operator within the generalized fractional derivatives depending on another function. Based on two fixed point results attributed to Schaefer and Banach, the desired results are verified. Further, the continuity of solutions in terms of inputs (fractional orders, associated parameters, and appropriate function) is extensively discussed. A simulative example is prepared to demonstrate the applications of the obtained results.
doi_str_mv 10.1002/mma.8301
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2799874638</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2799874638</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2231-3d982b5c740accf10a00be8225e429880aaed447e941b64273d20c41557ef57a3</originalsourceid><addsrcrecordid>eNp10M1KAzEQB_AgCtYq-AgBe_CydZLNNtljKX5Bixc9hzQ7qyn71WS3pZ58BJ_RJ3FrvXjwNMzwm2H4E3LJYMwA-E1ZmrGKgR2RAYM0jZiQk2MyACYhEpyJU3IWwgoAFGN8QJqnihpadkXrvj4-m9pVLW1GI9rQ0agfzE1TGOtMRXNvbOvqyhQ0c3mOHqvW9Q2uO7Of061r3-grVuhN4d4x-7OB3m16tsFwTk5yUwS8-K1D8nJ3-zx7iOZP94-z6TyynMcsirNU8WVipQBjbc7AACxRcZ6g4KlSYAxmQkhMBVtOBJdxxsEKliQS80SaeEiuDncbX687DK1e1Z3vnwmayzRVUkxi1avrg7K-DsFjrhvvSuN3moHe56n7PPU-z55GB7p1Be7-dXqxmP74b7HReGI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2799874638</pqid></control><display><type>article</type><title>On a multi‐point p$$ p $$‐Laplacian fractional differential equation with generalized fractional derivatives</title><source>Wiley Online Library All Journals</source><creator>Rezapour, Shahram ; Abbas, Mohamed I. ; Etemad, Sina ; Minh Dien, Nguyen</creator><creatorcontrib>Rezapour, Shahram ; Abbas, Mohamed I. ; Etemad, Sina ; Minh Dien, Nguyen</creatorcontrib><description>In the current paper, we intend to check the existence aspects of solutions for a category of the multi‐point boundary value problem (BVP) involving a p$$ p $$‐Laplacian differential operator within the generalized fractional derivatives depending on another function. Based on two fixed point results attributed to Schaefer and Banach, the desired results are verified. Further, the continuity of solutions in terms of inputs (fractional orders, associated parameters, and appropriate function) is extensively discussed. A simulative example is prepared to demonstrate the applications of the obtained results.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.8301</identifier><language>eng</language><publisher>Freiburg: Wiley Subscription Services, Inc</publisher><subject>Boundary value problems ; Derivatives ; Differential equations ; fixed point results ; Fractional calculus ; Mathematical analysis ; multi‐point BVP ; Operators (mathematics) ; p‐Laplacian ; the generalized fractional derivative</subject><ispartof>Mathematical methods in the applied sciences, 2023-05, Vol.46 (7), p.8390-8407</ispartof><rights>2022 John Wiley &amp; Sons, Ltd.</rights><rights>2023 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2231-3d982b5c740accf10a00be8225e429880aaed447e941b64273d20c41557ef57a3</citedby><cites>FETCH-LOGICAL-c2231-3d982b5c740accf10a00be8225e429880aaed447e941b64273d20c41557ef57a3</cites><orcidid>0000-0002-1574-1800 ; 0000-0002-3803-8114 ; 0000-0003-2255-7048 ; 0000-0003-3463-2607</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.8301$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.8301$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Rezapour, Shahram</creatorcontrib><creatorcontrib>Abbas, Mohamed I.</creatorcontrib><creatorcontrib>Etemad, Sina</creatorcontrib><creatorcontrib>Minh Dien, Nguyen</creatorcontrib><title>On a multi‐point p$$ p $$‐Laplacian fractional differential equation with generalized fractional derivatives</title><title>Mathematical methods in the applied sciences</title><description>In the current paper, we intend to check the existence aspects of solutions for a category of the multi‐point boundary value problem (BVP) involving a p$$ p $$‐Laplacian differential operator within the generalized fractional derivatives depending on another function. Based on two fixed point results attributed to Schaefer and Banach, the desired results are verified. Further, the continuity of solutions in terms of inputs (fractional orders, associated parameters, and appropriate function) is extensively discussed. A simulative example is prepared to demonstrate the applications of the obtained results.</description><subject>Boundary value problems</subject><subject>Derivatives</subject><subject>Differential equations</subject><subject>fixed point results</subject><subject>Fractional calculus</subject><subject>Mathematical analysis</subject><subject>multi‐point BVP</subject><subject>Operators (mathematics)</subject><subject>p‐Laplacian</subject><subject>the generalized fractional derivative</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp10M1KAzEQB_AgCtYq-AgBe_CydZLNNtljKX5Bixc9hzQ7qyn71WS3pZ58BJ_RJ3FrvXjwNMzwm2H4E3LJYMwA-E1ZmrGKgR2RAYM0jZiQk2MyACYhEpyJU3IWwgoAFGN8QJqnihpadkXrvj4-m9pVLW1GI9rQ0agfzE1TGOtMRXNvbOvqyhQ0c3mOHqvW9Q2uO7Of061r3-grVuhN4d4x-7OB3m16tsFwTk5yUwS8-K1D8nJ3-zx7iOZP94-z6TyynMcsirNU8WVipQBjbc7AACxRcZ6g4KlSYAxmQkhMBVtOBJdxxsEKliQS80SaeEiuDncbX687DK1e1Z3vnwmayzRVUkxi1avrg7K-DsFjrhvvSuN3moHe56n7PPU-z55GB7p1Be7-dXqxmP74b7HReGI</recordid><startdate>20230515</startdate><enddate>20230515</enddate><creator>Rezapour, Shahram</creator><creator>Abbas, Mohamed I.</creator><creator>Etemad, Sina</creator><creator>Minh Dien, Nguyen</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-1574-1800</orcidid><orcidid>https://orcid.org/0000-0002-3803-8114</orcidid><orcidid>https://orcid.org/0000-0003-2255-7048</orcidid><orcidid>https://orcid.org/0000-0003-3463-2607</orcidid></search><sort><creationdate>20230515</creationdate><title>On a multi‐point p$$ p $$‐Laplacian fractional differential equation with generalized fractional derivatives</title><author>Rezapour, Shahram ; Abbas, Mohamed I. ; Etemad, Sina ; Minh Dien, Nguyen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2231-3d982b5c740accf10a00be8225e429880aaed447e941b64273d20c41557ef57a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Boundary value problems</topic><topic>Derivatives</topic><topic>Differential equations</topic><topic>fixed point results</topic><topic>Fractional calculus</topic><topic>Mathematical analysis</topic><topic>multi‐point BVP</topic><topic>Operators (mathematics)</topic><topic>p‐Laplacian</topic><topic>the generalized fractional derivative</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rezapour, Shahram</creatorcontrib><creatorcontrib>Abbas, Mohamed I.</creatorcontrib><creatorcontrib>Etemad, Sina</creatorcontrib><creatorcontrib>Minh Dien, Nguyen</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rezapour, Shahram</au><au>Abbas, Mohamed I.</au><au>Etemad, Sina</au><au>Minh Dien, Nguyen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On a multi‐point p$$ p $$‐Laplacian fractional differential equation with generalized fractional derivatives</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2023-05-15</date><risdate>2023</risdate><volume>46</volume><issue>7</issue><spage>8390</spage><epage>8407</epage><pages>8390-8407</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>In the current paper, we intend to check the existence aspects of solutions for a category of the multi‐point boundary value problem (BVP) involving a p$$ p $$‐Laplacian differential operator within the generalized fractional derivatives depending on another function. Based on two fixed point results attributed to Schaefer and Banach, the desired results are verified. Further, the continuity of solutions in terms of inputs (fractional orders, associated parameters, and appropriate function) is extensively discussed. A simulative example is prepared to demonstrate the applications of the obtained results.</abstract><cop>Freiburg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mma.8301</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-1574-1800</orcidid><orcidid>https://orcid.org/0000-0002-3803-8114</orcidid><orcidid>https://orcid.org/0000-0003-2255-7048</orcidid><orcidid>https://orcid.org/0000-0003-3463-2607</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0170-4214
ispartof Mathematical methods in the applied sciences, 2023-05, Vol.46 (7), p.8390-8407
issn 0170-4214
1099-1476
language eng
recordid cdi_proquest_journals_2799874638
source Wiley Online Library All Journals
subjects Boundary value problems
Derivatives
Differential equations
fixed point results
Fractional calculus
Mathematical analysis
multi‐point BVP
Operators (mathematics)
p‐Laplacian
the generalized fractional derivative
title On a multi‐point p$$ p $$‐Laplacian fractional differential equation with generalized fractional derivatives
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T07%3A22%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20a%20multi%E2%80%90point%20p$$%20p%20$$%E2%80%90Laplacian%20fractional%20differential%20equation%20with%20generalized%20fractional%20derivatives&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Rezapour,%20Shahram&rft.date=2023-05-15&rft.volume=46&rft.issue=7&rft.spage=8390&rft.epage=8407&rft.pages=8390-8407&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.8301&rft_dat=%3Cproquest_cross%3E2799874638%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2799874638&rft_id=info:pmid/&rfr_iscdi=true