Fractional synchronization involving fractional derivatives with nonsingular kernels: Application to chaotic systems
We present a novel master‐slave fractional synchronization in chaotic systems by using fractional derivatives with nonlocal and nonsingular kernel. The master system is the fractional‐order chaotic system, and then, we designed a fractional‐order high gain observer, which is the slave system, based...
Gespeichert in:
Veröffentlicht in: | Mathematical methods in the applied sciences 2023-05, Vol.46 (7), p.7987-8003 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8003 |
---|---|
container_issue | 7 |
container_start_page | 7987 |
container_title | Mathematical methods in the applied sciences |
container_volume | 46 |
creator | Coronel‐Escamilla, A. Gómez‐Aguilar, J.F. Torres‐Jiménez, J. Mousa, A.A. Elagan, S.K. |
description | We present a novel master‐slave fractional synchronization in chaotic systems by using fractional derivatives with nonlocal and nonsingular kernel. The master system is the fractional‐order chaotic system, and then, we designed a fractional‐order high gain observer, which is the slave system, based on the chaotic system model to achieve the synchronization. We used three different oscillator systems, a novel Chen‐Burke‐Shaw chaotic attractor, a novel fractional‐order chaotic system, and the fractional‐order model of a simple autonomous Jerk circuit. Our research followed to test the performance of the fractional synchronization. We use two performance indices, the integral of the square error (ISE) and the integral of the square error multiplied by time (ITSE). We showed that by using the fractional‐order approach, we can reduce the values on the ISE and ITSE indices; hence, we guaranteed a full synchronization between the master and slave system. Our analysis shows that when using fractional derivatives with variable order, the ISE and ITSE indices have a lower value than when using the classical derivatives. We used the definition of Atangana‐Baleanu‐Caputo and Liouville‐Caputo derivatives for the three examples mentioned in this work. We numerically solved the equations using the Adams method. Our results show that when using the fractional‐order approach, the ISE and ITSE indices are lower than the integer‐order case. |
doi_str_mv | 10.1002/mma.7315 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2799874607</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2799874607</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2935-f109730b7e1d150e82c868fc6376d4472cdd13718cd06be9cebb8e51f16aa9a23</originalsourceid><addsrcrecordid>eNp10N9LwzAQB_AgCs4p-CcEfPGlM5f-SOvbGE6FDV_0OaRp6jLbpCZdx_zrzazgk08Hdx_uuC9C10BmQAi9a1sxYzGkJ2gCpCgiSFh2iiYEGIkSCsk5uvB-SwjJAegE9UsnZK-tEQ32ByM3zhr9JY4drM1gm0Gbd1z_oUo5PYT5oDze636DjTU-mF0jHP5QzqjG3-N51zVajmt6i-VG2F7LcMH3qvWX6KwWjVdXv3WK3pYPr4unaPXy-LyYryJJiziN6vAAi0nJFFSQEpVTmWd5LbOYZVWSMCqrCmIGuaxIVqpCqrLMVQo1ZEIUgsZTdDPu7Zz93Cnf863dufCF55QVRc6SjLCgbkclnfXeqZp3TrfCHTgQfsyUh0z5MdNAo5HudaMO_zq-Xs9__DcUNXsp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2799874607</pqid></control><display><type>article</type><title>Fractional synchronization involving fractional derivatives with nonsingular kernels: Application to chaotic systems</title><source>Access via Wiley Online Library</source><creator>Coronel‐Escamilla, A. ; Gómez‐Aguilar, J.F. ; Torres‐Jiménez, J. ; Mousa, A.A. ; Elagan, S.K.</creator><creatorcontrib>Coronel‐Escamilla, A. ; Gómez‐Aguilar, J.F. ; Torres‐Jiménez, J. ; Mousa, A.A. ; Elagan, S.K.</creatorcontrib><description>We present a novel master‐slave fractional synchronization in chaotic systems by using fractional derivatives with nonlocal and nonsingular kernel. The master system is the fractional‐order chaotic system, and then, we designed a fractional‐order high gain observer, which is the slave system, based on the chaotic system model to achieve the synchronization. We used three different oscillator systems, a novel Chen‐Burke‐Shaw chaotic attractor, a novel fractional‐order chaotic system, and the fractional‐order model of a simple autonomous Jerk circuit. Our research followed to test the performance of the fractional synchronization. We use two performance indices, the integral of the square error (ISE) and the integral of the square error multiplied by time (ITSE). We showed that by using the fractional‐order approach, we can reduce the values on the ISE and ITSE indices; hence, we guaranteed a full synchronization between the master and slave system. Our analysis shows that when using fractional derivatives with variable order, the ISE and ITSE indices have a lower value than when using the classical derivatives. We used the definition of Atangana‐Baleanu‐Caputo and Liouville‐Caputo derivatives for the three examples mentioned in this work. We numerically solved the equations using the Adams method. Our results show that when using the fractional‐order approach, the ISE and ITSE indices are lower than the integer‐order case.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.7315</identifier><language>eng</language><publisher>Freiburg: Wiley Subscription Services, Inc</publisher><subject>Chaos theory ; Circuits ; fractional derivatives and integrals ; fractional programming ; High gain ; Kernels ; Mathematical analysis ; Performance indices ; Synchronism</subject><ispartof>Mathematical methods in the applied sciences, 2023-05, Vol.46 (7), p.7987-8003</ispartof><rights>2021 John Wiley & Sons, Ltd.</rights><rights>2023 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2935-f109730b7e1d150e82c868fc6376d4472cdd13718cd06be9cebb8e51f16aa9a23</citedby><cites>FETCH-LOGICAL-c2935-f109730b7e1d150e82c868fc6376d4472cdd13718cd06be9cebb8e51f16aa9a23</cites><orcidid>0000-0001-9403-3767</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.7315$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.7315$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Coronel‐Escamilla, A.</creatorcontrib><creatorcontrib>Gómez‐Aguilar, J.F.</creatorcontrib><creatorcontrib>Torres‐Jiménez, J.</creatorcontrib><creatorcontrib>Mousa, A.A.</creatorcontrib><creatorcontrib>Elagan, S.K.</creatorcontrib><title>Fractional synchronization involving fractional derivatives with nonsingular kernels: Application to chaotic systems</title><title>Mathematical methods in the applied sciences</title><description>We present a novel master‐slave fractional synchronization in chaotic systems by using fractional derivatives with nonlocal and nonsingular kernel. The master system is the fractional‐order chaotic system, and then, we designed a fractional‐order high gain observer, which is the slave system, based on the chaotic system model to achieve the synchronization. We used three different oscillator systems, a novel Chen‐Burke‐Shaw chaotic attractor, a novel fractional‐order chaotic system, and the fractional‐order model of a simple autonomous Jerk circuit. Our research followed to test the performance of the fractional synchronization. We use two performance indices, the integral of the square error (ISE) and the integral of the square error multiplied by time (ITSE). We showed that by using the fractional‐order approach, we can reduce the values on the ISE and ITSE indices; hence, we guaranteed a full synchronization between the master and slave system. Our analysis shows that when using fractional derivatives with variable order, the ISE and ITSE indices have a lower value than when using the classical derivatives. We used the definition of Atangana‐Baleanu‐Caputo and Liouville‐Caputo derivatives for the three examples mentioned in this work. We numerically solved the equations using the Adams method. Our results show that when using the fractional‐order approach, the ISE and ITSE indices are lower than the integer‐order case.</description><subject>Chaos theory</subject><subject>Circuits</subject><subject>fractional derivatives and integrals</subject><subject>fractional programming</subject><subject>High gain</subject><subject>Kernels</subject><subject>Mathematical analysis</subject><subject>Performance indices</subject><subject>Synchronism</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp10N9LwzAQB_AgCs4p-CcEfPGlM5f-SOvbGE6FDV_0OaRp6jLbpCZdx_zrzazgk08Hdx_uuC9C10BmQAi9a1sxYzGkJ2gCpCgiSFh2iiYEGIkSCsk5uvB-SwjJAegE9UsnZK-tEQ32ByM3zhr9JY4drM1gm0Gbd1z_oUo5PYT5oDze636DjTU-mF0jHP5QzqjG3-N51zVajmt6i-VG2F7LcMH3qvWX6KwWjVdXv3WK3pYPr4unaPXy-LyYryJJiziN6vAAi0nJFFSQEpVTmWd5LbOYZVWSMCqrCmIGuaxIVqpCqrLMVQo1ZEIUgsZTdDPu7Zz93Cnf863dufCF55QVRc6SjLCgbkclnfXeqZp3TrfCHTgQfsyUh0z5MdNAo5HudaMO_zq-Xs9__DcUNXsp</recordid><startdate>20230515</startdate><enddate>20230515</enddate><creator>Coronel‐Escamilla, A.</creator><creator>Gómez‐Aguilar, J.F.</creator><creator>Torres‐Jiménez, J.</creator><creator>Mousa, A.A.</creator><creator>Elagan, S.K.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0001-9403-3767</orcidid></search><sort><creationdate>20230515</creationdate><title>Fractional synchronization involving fractional derivatives with nonsingular kernels: Application to chaotic systems</title><author>Coronel‐Escamilla, A. ; Gómez‐Aguilar, J.F. ; Torres‐Jiménez, J. ; Mousa, A.A. ; Elagan, S.K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2935-f109730b7e1d150e82c868fc6376d4472cdd13718cd06be9cebb8e51f16aa9a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Chaos theory</topic><topic>Circuits</topic><topic>fractional derivatives and integrals</topic><topic>fractional programming</topic><topic>High gain</topic><topic>Kernels</topic><topic>Mathematical analysis</topic><topic>Performance indices</topic><topic>Synchronism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Coronel‐Escamilla, A.</creatorcontrib><creatorcontrib>Gómez‐Aguilar, J.F.</creatorcontrib><creatorcontrib>Torres‐Jiménez, J.</creatorcontrib><creatorcontrib>Mousa, A.A.</creatorcontrib><creatorcontrib>Elagan, S.K.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Coronel‐Escamilla, A.</au><au>Gómez‐Aguilar, J.F.</au><au>Torres‐Jiménez, J.</au><au>Mousa, A.A.</au><au>Elagan, S.K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fractional synchronization involving fractional derivatives with nonsingular kernels: Application to chaotic systems</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2023-05-15</date><risdate>2023</risdate><volume>46</volume><issue>7</issue><spage>7987</spage><epage>8003</epage><pages>7987-8003</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>We present a novel master‐slave fractional synchronization in chaotic systems by using fractional derivatives with nonlocal and nonsingular kernel. The master system is the fractional‐order chaotic system, and then, we designed a fractional‐order high gain observer, which is the slave system, based on the chaotic system model to achieve the synchronization. We used three different oscillator systems, a novel Chen‐Burke‐Shaw chaotic attractor, a novel fractional‐order chaotic system, and the fractional‐order model of a simple autonomous Jerk circuit. Our research followed to test the performance of the fractional synchronization. We use two performance indices, the integral of the square error (ISE) and the integral of the square error multiplied by time (ITSE). We showed that by using the fractional‐order approach, we can reduce the values on the ISE and ITSE indices; hence, we guaranteed a full synchronization between the master and slave system. Our analysis shows that when using fractional derivatives with variable order, the ISE and ITSE indices have a lower value than when using the classical derivatives. We used the definition of Atangana‐Baleanu‐Caputo and Liouville‐Caputo derivatives for the three examples mentioned in this work. We numerically solved the equations using the Adams method. Our results show that when using the fractional‐order approach, the ISE and ITSE indices are lower than the integer‐order case.</abstract><cop>Freiburg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mma.7315</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-9403-3767</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0170-4214 |
ispartof | Mathematical methods in the applied sciences, 2023-05, Vol.46 (7), p.7987-8003 |
issn | 0170-4214 1099-1476 |
language | eng |
recordid | cdi_proquest_journals_2799874607 |
source | Access via Wiley Online Library |
subjects | Chaos theory Circuits fractional derivatives and integrals fractional programming High gain Kernels Mathematical analysis Performance indices Synchronism |
title | Fractional synchronization involving fractional derivatives with nonsingular kernels: Application to chaotic systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T13%3A14%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fractional%20synchronization%20involving%20fractional%20derivatives%20with%20nonsingular%20kernels:%20Application%20to%20chaotic%20systems&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Coronel%E2%80%90Escamilla,%20A.&rft.date=2023-05-15&rft.volume=46&rft.issue=7&rft.spage=7987&rft.epage=8003&rft.pages=7987-8003&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.7315&rft_dat=%3Cproquest_cross%3E2799874607%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2799874607&rft_id=info:pmid/&rfr_iscdi=true |