Overview of the Iseult 11.7 T MRI cryoplant operation
The Iseult whole-body MRI delivered its first images in October 2021. The masterpiece of this MRI is an actively shielded NbTi magnet providing a homogeneous magnetic field of 11.7 T within a 90 cm warm bore. A dedicated cryoplant was constructed to cool the magnet at 1.8 K using a superfluid helium...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on applied superconductivity 2023-08, Vol.33 (5), p.1-5 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5 |
---|---|
container_issue | 5 |
container_start_page | 1 |
container_title | IEEE transactions on applied superconductivity |
container_volume | 33 |
creator | Lannou, H. Belorgey, J. Bonnelye, C. Bredy, Ph Dubois, O. Guihard, Q. Jannot, V. Juster, F.P. Lepretre, F. Molinie, F. Quettier, L. Roger, A. Scola, L. Sinanna, A. Stepanov, V. Touzery, R. |
description | The Iseult whole-body MRI delivered its first images in October 2021. The masterpiece of this MRI is an actively shielded NbTi magnet providing a homogeneous magnetic field of 11.7 T within a 90 cm warm bore. A dedicated cryoplant was constructed to cool the magnet at 1.8 K using a superfluid helium bath and it is in nominal operation since March 2019. This paper will present the cryoplant design, as well as the connection of the cryogenic ancillary equipment with the magnet. Estimated thermal losses will be compared with experimental data collected since the beginning of the cooling phase. Then, we will describe the system maintenance and the periodic controls of the various pressurized components performed keeping the continuous nominal operation of the MRI. Finally, we will present the first lessons learned on this unique cryogenic system operation and possible options to improve its reliability. |
doi_str_mv | 10.1109/TASC.2023.3263142 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2799860729</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10087296</ieee_id><sourcerecordid>2799860729</sourcerecordid><originalsourceid>FETCH-LOGICAL-c280t-bdcb019e47c4391928abdace9582f04535a4841be7ac39d6e164e27b188922123</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhhdRUKs_QPCw4MlD4s5-JLvHUtQWKgWt52WTTmhK7NZNWum_d0OKeJpheN6X4SHkDlgKwMzTcvwxSTnjIhU8EyD5GbkCpXTCFajzuDMFieZcXJLrtt0wBlJLdUXU4oDhUOMP9RXt1khnLe6bjgKkOV3St_cZLcPR7xq37ajfYXBd7bc35KJyTYu3pzkiny_Py8k0mS9eZ5PxPCm5Zl1SrMqCgUGZl1IYMFy7YuVKNErzikkllItfQIG5K4VZZQiZRJ4XoLXhHLgYkcehd-0auwv1lwtH611tp-O57W9MylzGtgNE9mFgd8F_77Ht7Mbvwza-Z3lujM5Yzk2kYKDK4Ns2YPVXC8z2Jm1v0vYm7clkzNwPmRoR__FMx8ZM_ALGpGtg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2799860729</pqid></control><display><type>article</type><title>Overview of the Iseult 11.7 T MRI cryoplant operation</title><source>IEEE Electronic Library (IEL)</source><creator>Lannou, H. ; Belorgey, J. ; Bonnelye, C. ; Bredy, Ph ; Dubois, O. ; Guihard, Q. ; Jannot, V. ; Juster, F.P. ; Lepretre, F. ; Molinie, F. ; Quettier, L. ; Roger, A. ; Scola, L. ; Sinanna, A. ; Stepanov, V. ; Touzery, R.</creator><creatorcontrib>Lannou, H. ; Belorgey, J. ; Bonnelye, C. ; Bredy, Ph ; Dubois, O. ; Guihard, Q. ; Jannot, V. ; Juster, F.P. ; Lepretre, F. ; Molinie, F. ; Quettier, L. ; Roger, A. ; Scola, L. ; Sinanna, A. ; Stepanov, V. ; Touzery, R.</creatorcontrib><description>The Iseult whole-body MRI delivered its first images in October 2021. The masterpiece of this MRI is an actively shielded NbTi magnet providing a homogeneous magnetic field of 11.7 T within a 90 cm warm bore. A dedicated cryoplant was constructed to cool the magnet at 1.8 K using a superfluid helium bath and it is in nominal operation since March 2019. This paper will present the cryoplant design, as well as the connection of the cryogenic ancillary equipment with the magnet. Estimated thermal losses will be compared with experimental data collected since the beginning of the cooling phase. Then, we will describe the system maintenance and the periodic controls of the various pressurized components performed keeping the continuous nominal operation of the MRI. Finally, we will present the first lessons learned on this unique cryogenic system operation and possible options to improve its reliability.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2023.3263142</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Cryogenic equipment ; Cryogenics ; Fluids ; Helium ; Life Sciences ; Liquid helium ; Magnetic noise ; Magnetic resonance imaging ; Magnetic shielding ; Magnetic tunneling ; superconducting magnet ; Superconducting magnets ; Superfluidity ; Welding</subject><ispartof>IEEE transactions on applied superconductivity, 2023-08, Vol.33 (5), p.1-5</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c280t-bdcb019e47c4391928abdace9582f04535a4841be7ac39d6e164e27b188922123</cites><orcidid>0000-0002-8496-4055 ; 0000-0001-8657-5929 ; 0000-0002-6108-176X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10087296$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10087296$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://hal.univ-lille.fr/hal-04474582$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Lannou, H.</creatorcontrib><creatorcontrib>Belorgey, J.</creatorcontrib><creatorcontrib>Bonnelye, C.</creatorcontrib><creatorcontrib>Bredy, Ph</creatorcontrib><creatorcontrib>Dubois, O.</creatorcontrib><creatorcontrib>Guihard, Q.</creatorcontrib><creatorcontrib>Jannot, V.</creatorcontrib><creatorcontrib>Juster, F.P.</creatorcontrib><creatorcontrib>Lepretre, F.</creatorcontrib><creatorcontrib>Molinie, F.</creatorcontrib><creatorcontrib>Quettier, L.</creatorcontrib><creatorcontrib>Roger, A.</creatorcontrib><creatorcontrib>Scola, L.</creatorcontrib><creatorcontrib>Sinanna, A.</creatorcontrib><creatorcontrib>Stepanov, V.</creatorcontrib><creatorcontrib>Touzery, R.</creatorcontrib><title>Overview of the Iseult 11.7 T MRI cryoplant operation</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>The Iseult whole-body MRI delivered its first images in October 2021. The masterpiece of this MRI is an actively shielded NbTi magnet providing a homogeneous magnetic field of 11.7 T within a 90 cm warm bore. A dedicated cryoplant was constructed to cool the magnet at 1.8 K using a superfluid helium bath and it is in nominal operation since March 2019. This paper will present the cryoplant design, as well as the connection of the cryogenic ancillary equipment with the magnet. Estimated thermal losses will be compared with experimental data collected since the beginning of the cooling phase. Then, we will describe the system maintenance and the periodic controls of the various pressurized components performed keeping the continuous nominal operation of the MRI. Finally, we will present the first lessons learned on this unique cryogenic system operation and possible options to improve its reliability.</description><subject>Cryogenic equipment</subject><subject>Cryogenics</subject><subject>Fluids</subject><subject>Helium</subject><subject>Life Sciences</subject><subject>Liquid helium</subject><subject>Magnetic noise</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic shielding</subject><subject>Magnetic tunneling</subject><subject>superconducting magnet</subject><subject>Superconducting magnets</subject><subject>Superfluidity</subject><subject>Welding</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1Lw0AQhhdRUKs_QPCw4MlD4s5-JLvHUtQWKgWt52WTTmhK7NZNWum_d0OKeJpheN6X4SHkDlgKwMzTcvwxSTnjIhU8EyD5GbkCpXTCFajzuDMFieZcXJLrtt0wBlJLdUXU4oDhUOMP9RXt1khnLe6bjgKkOV3St_cZLcPR7xq37ajfYXBd7bc35KJyTYu3pzkiny_Py8k0mS9eZ5PxPCm5Zl1SrMqCgUGZl1IYMFy7YuVKNErzikkllItfQIG5K4VZZQiZRJ4XoLXhHLgYkcehd-0auwv1lwtH611tp-O57W9MylzGtgNE9mFgd8F_77Ht7Mbvwza-Z3lujM5Yzk2kYKDK4Ns2YPVXC8z2Jm1v0vYm7clkzNwPmRoR__FMx8ZM_ALGpGtg</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Lannou, H.</creator><creator>Belorgey, J.</creator><creator>Bonnelye, C.</creator><creator>Bredy, Ph</creator><creator>Dubois, O.</creator><creator>Guihard, Q.</creator><creator>Jannot, V.</creator><creator>Juster, F.P.</creator><creator>Lepretre, F.</creator><creator>Molinie, F.</creator><creator>Quettier, L.</creator><creator>Roger, A.</creator><creator>Scola, L.</creator><creator>Sinanna, A.</creator><creator>Stepanov, V.</creator><creator>Touzery, R.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-8496-4055</orcidid><orcidid>https://orcid.org/0000-0001-8657-5929</orcidid><orcidid>https://orcid.org/0000-0002-6108-176X</orcidid></search><sort><creationdate>20230801</creationdate><title>Overview of the Iseult 11.7 T MRI cryoplant operation</title><author>Lannou, H. ; Belorgey, J. ; Bonnelye, C. ; Bredy, Ph ; Dubois, O. ; Guihard, Q. ; Jannot, V. ; Juster, F.P. ; Lepretre, F. ; Molinie, F. ; Quettier, L. ; Roger, A. ; Scola, L. ; Sinanna, A. ; Stepanov, V. ; Touzery, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c280t-bdcb019e47c4391928abdace9582f04535a4841be7ac39d6e164e27b188922123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cryogenic equipment</topic><topic>Cryogenics</topic><topic>Fluids</topic><topic>Helium</topic><topic>Life Sciences</topic><topic>Liquid helium</topic><topic>Magnetic noise</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic shielding</topic><topic>Magnetic tunneling</topic><topic>superconducting magnet</topic><topic>Superconducting magnets</topic><topic>Superfluidity</topic><topic>Welding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lannou, H.</creatorcontrib><creatorcontrib>Belorgey, J.</creatorcontrib><creatorcontrib>Bonnelye, C.</creatorcontrib><creatorcontrib>Bredy, Ph</creatorcontrib><creatorcontrib>Dubois, O.</creatorcontrib><creatorcontrib>Guihard, Q.</creatorcontrib><creatorcontrib>Jannot, V.</creatorcontrib><creatorcontrib>Juster, F.P.</creatorcontrib><creatorcontrib>Lepretre, F.</creatorcontrib><creatorcontrib>Molinie, F.</creatorcontrib><creatorcontrib>Quettier, L.</creatorcontrib><creatorcontrib>Roger, A.</creatorcontrib><creatorcontrib>Scola, L.</creatorcontrib><creatorcontrib>Sinanna, A.</creatorcontrib><creatorcontrib>Stepanov, V.</creatorcontrib><creatorcontrib>Touzery, R.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lannou, H.</au><au>Belorgey, J.</au><au>Bonnelye, C.</au><au>Bredy, Ph</au><au>Dubois, O.</au><au>Guihard, Q.</au><au>Jannot, V.</au><au>Juster, F.P.</au><au>Lepretre, F.</au><au>Molinie, F.</au><au>Quettier, L.</au><au>Roger, A.</au><au>Scola, L.</au><au>Sinanna, A.</au><au>Stepanov, V.</au><au>Touzery, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Overview of the Iseult 11.7 T MRI cryoplant operation</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2023-08-01</date><risdate>2023</risdate><volume>33</volume><issue>5</issue><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>The Iseult whole-body MRI delivered its first images in October 2021. The masterpiece of this MRI is an actively shielded NbTi magnet providing a homogeneous magnetic field of 11.7 T within a 90 cm warm bore. A dedicated cryoplant was constructed to cool the magnet at 1.8 K using a superfluid helium bath and it is in nominal operation since March 2019. This paper will present the cryoplant design, as well as the connection of the cryogenic ancillary equipment with the magnet. Estimated thermal losses will be compared with experimental data collected since the beginning of the cooling phase. Then, we will describe the system maintenance and the periodic controls of the various pressurized components performed keeping the continuous nominal operation of the MRI. Finally, we will present the first lessons learned on this unique cryogenic system operation and possible options to improve its reliability.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TASC.2023.3263142</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-8496-4055</orcidid><orcidid>https://orcid.org/0000-0001-8657-5929</orcidid><orcidid>https://orcid.org/0000-0002-6108-176X</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1051-8223 |
ispartof | IEEE transactions on applied superconductivity, 2023-08, Vol.33 (5), p.1-5 |
issn | 1051-8223 1558-2515 |
language | eng |
recordid | cdi_proquest_journals_2799860729 |
source | IEEE Electronic Library (IEL) |
subjects | Cryogenic equipment Cryogenics Fluids Helium Life Sciences Liquid helium Magnetic noise Magnetic resonance imaging Magnetic shielding Magnetic tunneling superconducting magnet Superconducting magnets Superfluidity Welding |
title | Overview of the Iseult 11.7 T MRI cryoplant operation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A39%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Overview%20of%20the%20Iseult%2011.7%20T%20MRI%20cryoplant%20operation&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Lannou,%20H.&rft.date=2023-08-01&rft.volume=33&rft.issue=5&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2023.3263142&rft_dat=%3Cproquest_RIE%3E2799860729%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2799860729&rft_id=info:pmid/&rft_ieee_id=10087296&rfr_iscdi=true |