Universal almost Optimal Compression and Slepian-wolf Coding in Probabilistic Polynomial Time

In a lossless compression system with target lengths, a compressor maps an integer m and a binary string x to an m-bit code p, and if m is sufficiently large, a decompressor reconstructs x from p. We call a pair (m,x) achievable for ( , ) if this reconstruction is successful. We introduce the notion...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the ACM 2023-04, Vol.70 (2), p.1-33, Article 9
Hauptverfasser: Bauwens, Bruno, Zimand, Marius
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 33
container_issue 2
container_start_page 1
container_title Journal of the ACM
container_volume 70
creator Bauwens, Bruno
Zimand, Marius
description In a lossless compression system with target lengths, a compressor maps an integer m and a binary string x to an m-bit code p, and if m is sufficiently large, a decompressor reconstructs x from p. We call a pair (m,x) achievable for ( , ) if this reconstruction is successful. We introduce the notion of an optimal compressor opt by the following universality property: For any compressor-decompressor pair ( , ), there exists a decompressor ′ such that if (m,x) is achievable for ( , ), then (m + Δ , x) is achievable for ( opt, ′), where Δ is some small value called the overhead. We show that there exists an optimal compressor that has only polylogarithmic overhead and works in probabilistic polynomial time. Differently said, for any pair ( , ), no matter how slow is, or even if is non-computable, opt is a fixed compressor that in polynomial time produces codes almost as short as those of . The cost is that the corresponding decompressor is slower. We also show that each such optimal compressor can be used for distributed compression, in which case it can achieve optimal compression rates as given in the Slepian–Wolf theorem and even for the Kolmogorov complexity variant of this theorem.
doi_str_mv 10.1145/3575807
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2799792439</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2799792439</sourcerecordid><originalsourceid>FETCH-LOGICAL-a234t-9d34ba84e46e1e42a49027964915adb7840a9d70dc7d4eb6ff9080ccca7f31fe3</originalsourceid><addsrcrecordid>eNo9kEtLAzEUhYMoWKu4dxVw4Wo0mUkmk6UUX1BowRbcyJDJQ1IyyZhMlf57I62uLofz3XO5B4BLjG4xJvSuoow2iB2BCaaUFayib8dgghAiBSUYn4KzlDZZohKxCXhfe_ulYxIOCteHNMLFMNo-y1noh6hTssFD4RV8dXqwwhffwZlsKus_oPVwGUMnOutsGq2Ey-B2PvQ2769sr8_BiREu6YvDnIL148Nq9lzMF08vs_t5IcqKjAVXFelEQzSpNdakFISjkvGacEyF6lhDkOCKISWZIrqrjeGoQVJKwUyFja6m4HqfO8TwudVpbDdhG30-2eYcznhJKp6pmz0lY0gpatMOMb8ady1G7W937aG7TF7tSSH7f-jP_AExv2mj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2799792439</pqid></control><display><type>article</type><title>Universal almost Optimal Compression and Slepian-wolf Coding in Probabilistic Polynomial Time</title><source>ACM Digital Library Complete</source><creator>Bauwens, Bruno ; Zimand, Marius</creator><creatorcontrib>Bauwens, Bruno ; Zimand, Marius</creatorcontrib><description>In a lossless compression system with target lengths, a compressor maps an integer m and a binary string x to an m-bit code p, and if m is sufficiently large, a decompressor reconstructs x from p. We call a pair (m,x) achievable for ( , ) if this reconstruction is successful. We introduce the notion of an optimal compressor opt by the following universality property: For any compressor-decompressor pair ( , ), there exists a decompressor ′ such that if (m,x) is achievable for ( , ), then (m + Δ , x) is achievable for ( opt, ′), where Δ is some small value called the overhead. We show that there exists an optimal compressor that has only polylogarithmic overhead and works in probabilistic polynomial time. Differently said, for any pair ( , ), no matter how slow is, or even if is non-computable, opt is a fixed compressor that in polynomial time produces codes almost as short as those of . The cost is that the corresponding decompressor is slower. We also show that each such optimal compressor can be used for distributed compression, in which case it can achieve optimal compression rates as given in the Slepian–Wolf theorem and even for the Kolmogorov complexity variant of this theorem.</description><identifier>ISSN: 0004-5411</identifier><identifier>EISSN: 1557-735X</identifier><identifier>DOI: 10.1145/3575807</identifier><language>eng</language><publisher>New York, NY: ACM</publisher><subject>Expander graphs and randomness extractors ; Information theory ; Mathematics of computing ; Polynomials ; Randomness, geometry and discrete structures ; Theorems ; Theory of computation</subject><ispartof>Journal of the ACM, 2023-04, Vol.70 (2), p.1-33, Article 9</ispartof><rights>Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from</rights><rights>Copyright Association for Computing Machinery Apr 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a234t-9d34ba84e46e1e42a49027964915adb7840a9d70dc7d4eb6ff9080ccca7f31fe3</cites><orcidid>0000-0002-5938-6599 ; 0000-0002-6138-0591</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://dl.acm.org/doi/pdf/10.1145/3575807$$EPDF$$P50$$Gacm$$H</linktopdf><link.rule.ids>314,776,780,2276,27901,27902,40172,75971</link.rule.ids></links><search><creatorcontrib>Bauwens, Bruno</creatorcontrib><creatorcontrib>Zimand, Marius</creatorcontrib><title>Universal almost Optimal Compression and Slepian-wolf Coding in Probabilistic Polynomial Time</title><title>Journal of the ACM</title><addtitle>ACM JACM</addtitle><description>In a lossless compression system with target lengths, a compressor maps an integer m and a binary string x to an m-bit code p, and if m is sufficiently large, a decompressor reconstructs x from p. We call a pair (m,x) achievable for ( , ) if this reconstruction is successful. We introduce the notion of an optimal compressor opt by the following universality property: For any compressor-decompressor pair ( , ), there exists a decompressor ′ such that if (m,x) is achievable for ( , ), then (m + Δ , x) is achievable for ( opt, ′), where Δ is some small value called the overhead. We show that there exists an optimal compressor that has only polylogarithmic overhead and works in probabilistic polynomial time. Differently said, for any pair ( , ), no matter how slow is, or even if is non-computable, opt is a fixed compressor that in polynomial time produces codes almost as short as those of . The cost is that the corresponding decompressor is slower. We also show that each such optimal compressor can be used for distributed compression, in which case it can achieve optimal compression rates as given in the Slepian–Wolf theorem and even for the Kolmogorov complexity variant of this theorem.</description><subject>Expander graphs and randomness extractors</subject><subject>Information theory</subject><subject>Mathematics of computing</subject><subject>Polynomials</subject><subject>Randomness, geometry and discrete structures</subject><subject>Theorems</subject><subject>Theory of computation</subject><issn>0004-5411</issn><issn>1557-735X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLAzEUhYMoWKu4dxVw4Wo0mUkmk6UUX1BowRbcyJDJQ1IyyZhMlf57I62uLofz3XO5B4BLjG4xJvSuoow2iB2BCaaUFayib8dgghAiBSUYn4KzlDZZohKxCXhfe_ulYxIOCteHNMLFMNo-y1noh6hTssFD4RV8dXqwwhffwZlsKus_oPVwGUMnOutsGq2Ey-B2PvQ2769sr8_BiREu6YvDnIL148Nq9lzMF08vs_t5IcqKjAVXFelEQzSpNdakFISjkvGacEyF6lhDkOCKISWZIrqrjeGoQVJKwUyFja6m4HqfO8TwudVpbDdhG30-2eYcznhJKp6pmz0lY0gpatMOMb8ady1G7W937aG7TF7tSSH7f-jP_AExv2mj</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Bauwens, Bruno</creator><creator>Zimand, Marius</creator><general>ACM</general><general>Association for Computing Machinery</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5938-6599</orcidid><orcidid>https://orcid.org/0000-0002-6138-0591</orcidid></search><sort><creationdate>20230401</creationdate><title>Universal almost Optimal Compression and Slepian-wolf Coding in Probabilistic Polynomial Time</title><author>Bauwens, Bruno ; Zimand, Marius</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a234t-9d34ba84e46e1e42a49027964915adb7840a9d70dc7d4eb6ff9080ccca7f31fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Expander graphs and randomness extractors</topic><topic>Information theory</topic><topic>Mathematics of computing</topic><topic>Polynomials</topic><topic>Randomness, geometry and discrete structures</topic><topic>Theorems</topic><topic>Theory of computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bauwens, Bruno</creatorcontrib><creatorcontrib>Zimand, Marius</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of the ACM</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bauwens, Bruno</au><au>Zimand, Marius</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Universal almost Optimal Compression and Slepian-wolf Coding in Probabilistic Polynomial Time</atitle><jtitle>Journal of the ACM</jtitle><stitle>ACM JACM</stitle><date>2023-04-01</date><risdate>2023</risdate><volume>70</volume><issue>2</issue><spage>1</spage><epage>33</epage><pages>1-33</pages><artnum>9</artnum><issn>0004-5411</issn><eissn>1557-735X</eissn><abstract>In a lossless compression system with target lengths, a compressor maps an integer m and a binary string x to an m-bit code p, and if m is sufficiently large, a decompressor reconstructs x from p. We call a pair (m,x) achievable for ( , ) if this reconstruction is successful. We introduce the notion of an optimal compressor opt by the following universality property: For any compressor-decompressor pair ( , ), there exists a decompressor ′ such that if (m,x) is achievable for ( , ), then (m + Δ , x) is achievable for ( opt, ′), where Δ is some small value called the overhead. We show that there exists an optimal compressor that has only polylogarithmic overhead and works in probabilistic polynomial time. Differently said, for any pair ( , ), no matter how slow is, or even if is non-computable, opt is a fixed compressor that in polynomial time produces codes almost as short as those of . The cost is that the corresponding decompressor is slower. We also show that each such optimal compressor can be used for distributed compression, in which case it can achieve optimal compression rates as given in the Slepian–Wolf theorem and even for the Kolmogorov complexity variant of this theorem.</abstract><cop>New York, NY</cop><pub>ACM</pub><doi>10.1145/3575807</doi><tpages>33</tpages><orcidid>https://orcid.org/0000-0002-5938-6599</orcidid><orcidid>https://orcid.org/0000-0002-6138-0591</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0004-5411
ispartof Journal of the ACM, 2023-04, Vol.70 (2), p.1-33, Article 9
issn 0004-5411
1557-735X
language eng
recordid cdi_proquest_journals_2799792439
source ACM Digital Library Complete
subjects Expander graphs and randomness extractors
Information theory
Mathematics of computing
Polynomials
Randomness, geometry and discrete structures
Theorems
Theory of computation
title Universal almost Optimal Compression and Slepian-wolf Coding in Probabilistic Polynomial Time
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T23%3A09%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Universal%20almost%20Optimal%20Compression%20and%20Slepian-wolf%20Coding%20in%20Probabilistic%20Polynomial%20Time&rft.jtitle=Journal%20of%20the%20ACM&rft.au=Bauwens,%20Bruno&rft.date=2023-04-01&rft.volume=70&rft.issue=2&rft.spage=1&rft.epage=33&rft.pages=1-33&rft.artnum=9&rft.issn=0004-5411&rft.eissn=1557-735X&rft_id=info:doi/10.1145/3575807&rft_dat=%3Cproquest_cross%3E2799792439%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2799792439&rft_id=info:pmid/&rfr_iscdi=true