Spatio-Temporal Wind Speed Prediction Based on Improved Residual Shrinkage Network
Considering the massive influx of new energy into the power system, accurate wind speed prediction is of great importance to its stability. Due to the influence of sensor accuracy and harsh natural environments, there is inevitable noise interference in original wind speed data, which adversely affe...
Gespeichert in:
Veröffentlicht in: | Sustainability 2023-04, Vol.15 (7), p.5871 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 7 |
container_start_page | 5871 |
container_title | Sustainability |
container_volume | 15 |
creator | Liang, Xinhao Hu, Feihu Li, Xin Zhang, Lin Cao, Hui Li, Haiming |
description | Considering the massive influx of new energy into the power system, accurate wind speed prediction is of great importance to its stability. Due to the influence of sensor accuracy and harsh natural environments, there is inevitable noise interference in original wind speed data, which adversely affects the accuracy of wind speed prediction. There are some problems associated with traditional signal processing methods when dealing with noise such as signal loss. We propose the use of a deep residual shrinkage unit based on soft activation (SDRSU) in order to reduce noise interference and ensure the integrity of original wind speed data. A deep network is constructed by stacking multiple SDRSUs to extract useful features from noisy data. Considering the spatio-temporal coupling relationship between wind turbines in a wind farm, a ST-SDRSN (soft-activation based deep spatio-temporal residual shrinkage network) will be used to model the wind speed series neighboring time property and daily periodic property. An accurate wind speed prediction can be achieved by extracting the spatial correlations between the turbines at each turbine along the time axis. We designed four depth models under the same spatio-temporal architecture to verify the advantages of the soft-activation block and the proposed ST-SDRSN model. Two datasets provided by the National Renewable Energy Laboratory (NREL) were used for our experiments. Based on different kinds of evaluation criteria in different datasets, ST-SDRSN was shown to improve prediction accuracy by 15.87%. |
doi_str_mv | 10.3390/su15075871 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2799790144</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A746948915</galeid><sourcerecordid>A746948915</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-9182055efeffc904516064f0a8d167a4b25fc160db68c9b5e1ea53bf6afe34f13</originalsourceid><addsrcrecordid>eNpVkV1LwzAUhoMoOKY3_oKCVwqdSZM0zeUcfgyGyjrxsqTpycw-2pq0fvx7IxN0ORd5ec_zngQOQmcEjyiV-Mr3hGPBM0EO0CDBgsQEc3z4Tx-jU-9XOBxKiSTpAM3zVnW2iRewbRunNtGLrasobwGq6MlBZXXo1tG18sEIYrptXfMe9By8rfoQyF-drddqCdEDdB-NW5-gI6M2Hk5_7yF6vr1ZTO7j2ePddDKexZomooslyRLMORgwRkvMOElxygxWWUVSoViZcKODV5VppmXJgYDitDSpMkCZIXSIzndzw4_eevBdsWp6V4cni0RIKSQmjAVqtKOWagOFrU3TOaVDVbC1uqnB2OCPBUslyyThIXCxFwhMB5_dUvXeF9N8vs9e7ljtGu8dmKJ1dqvcV0Fw8bOT4m8n9Bu6QnzX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2799790144</pqid></control><display><type>article</type><title>Spatio-Temporal Wind Speed Prediction Based on Improved Residual Shrinkage Network</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><creator>Liang, Xinhao ; Hu, Feihu ; Li, Xin ; Zhang, Lin ; Cao, Hui ; Li, Haiming</creator><creatorcontrib>Liang, Xinhao ; Hu, Feihu ; Li, Xin ; Zhang, Lin ; Cao, Hui ; Li, Haiming</creatorcontrib><description>Considering the massive influx of new energy into the power system, accurate wind speed prediction is of great importance to its stability. Due to the influence of sensor accuracy and harsh natural environments, there is inevitable noise interference in original wind speed data, which adversely affects the accuracy of wind speed prediction. There are some problems associated with traditional signal processing methods when dealing with noise such as signal loss. We propose the use of a deep residual shrinkage unit based on soft activation (SDRSU) in order to reduce noise interference and ensure the integrity of original wind speed data. A deep network is constructed by stacking multiple SDRSUs to extract useful features from noisy data. Considering the spatio-temporal coupling relationship between wind turbines in a wind farm, a ST-SDRSN (soft-activation based deep spatio-temporal residual shrinkage network) will be used to model the wind speed series neighboring time property and daily periodic property. An accurate wind speed prediction can be achieved by extracting the spatial correlations between the turbines at each turbine along the time axis. We designed four depth models under the same spatio-temporal architecture to verify the advantages of the soft-activation block and the proposed ST-SDRSN model. Two datasets provided by the National Renewable Energy Laboratory (NREL) were used for our experiments. Based on different kinds of evaluation criteria in different datasets, ST-SDRSN was shown to improve prediction accuracy by 15.87%.</description><identifier>ISSN: 2071-1050</identifier><identifier>EISSN: 2071-1050</identifier><identifier>DOI: 10.3390/su15075871</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Air-turbines ; Algorithms ; Alternative energy sources ; Analysis ; Climate change ; Datasets ; Deep learning ; Energy development ; Geospatial data ; Natural environment ; Neural networks ; Noise control ; Noise reduction ; Predictions ; Sensors ; Signal processing ; Speed ; Time series ; Turbines ; Wind farms ; Wind power ; Wind speed ; Winds</subject><ispartof>Sustainability, 2023-04, Vol.15 (7), p.5871</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c327t-9182055efeffc904516064f0a8d167a4b25fc160db68c9b5e1ea53bf6afe34f13</cites><orcidid>0000-0003-3301-2713</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27928,27929</link.rule.ids></links><search><creatorcontrib>Liang, Xinhao</creatorcontrib><creatorcontrib>Hu, Feihu</creatorcontrib><creatorcontrib>Li, Xin</creatorcontrib><creatorcontrib>Zhang, Lin</creatorcontrib><creatorcontrib>Cao, Hui</creatorcontrib><creatorcontrib>Li, Haiming</creatorcontrib><title>Spatio-Temporal Wind Speed Prediction Based on Improved Residual Shrinkage Network</title><title>Sustainability</title><description>Considering the massive influx of new energy into the power system, accurate wind speed prediction is of great importance to its stability. Due to the influence of sensor accuracy and harsh natural environments, there is inevitable noise interference in original wind speed data, which adversely affects the accuracy of wind speed prediction. There are some problems associated with traditional signal processing methods when dealing with noise such as signal loss. We propose the use of a deep residual shrinkage unit based on soft activation (SDRSU) in order to reduce noise interference and ensure the integrity of original wind speed data. A deep network is constructed by stacking multiple SDRSUs to extract useful features from noisy data. Considering the spatio-temporal coupling relationship between wind turbines in a wind farm, a ST-SDRSN (soft-activation based deep spatio-temporal residual shrinkage network) will be used to model the wind speed series neighboring time property and daily periodic property. An accurate wind speed prediction can be achieved by extracting the spatial correlations between the turbines at each turbine along the time axis. We designed four depth models under the same spatio-temporal architecture to verify the advantages of the soft-activation block and the proposed ST-SDRSN model. Two datasets provided by the National Renewable Energy Laboratory (NREL) were used for our experiments. Based on different kinds of evaluation criteria in different datasets, ST-SDRSN was shown to improve prediction accuracy by 15.87%.</description><subject>Accuracy</subject><subject>Air-turbines</subject><subject>Algorithms</subject><subject>Alternative energy sources</subject><subject>Analysis</subject><subject>Climate change</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Energy development</subject><subject>Geospatial data</subject><subject>Natural environment</subject><subject>Neural networks</subject><subject>Noise control</subject><subject>Noise reduction</subject><subject>Predictions</subject><subject>Sensors</subject><subject>Signal processing</subject><subject>Speed</subject><subject>Time series</subject><subject>Turbines</subject><subject>Wind farms</subject><subject>Wind power</subject><subject>Wind speed</subject><subject>Winds</subject><issn>2071-1050</issn><issn>2071-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpVkV1LwzAUhoMoOKY3_oKCVwqdSZM0zeUcfgyGyjrxsqTpycw-2pq0fvx7IxN0ORd5ec_zngQOQmcEjyiV-Mr3hGPBM0EO0CDBgsQEc3z4Tx-jU-9XOBxKiSTpAM3zVnW2iRewbRunNtGLrasobwGq6MlBZXXo1tG18sEIYrptXfMe9By8rfoQyF-drddqCdEDdB-NW5-gI6M2Hk5_7yF6vr1ZTO7j2ePddDKexZomooslyRLMORgwRkvMOElxygxWWUVSoViZcKODV5VppmXJgYDitDSpMkCZIXSIzndzw4_eevBdsWp6V4cni0RIKSQmjAVqtKOWagOFrU3TOaVDVbC1uqnB2OCPBUslyyThIXCxFwhMB5_dUvXeF9N8vs9e7ljtGu8dmKJ1dqvcV0Fw8bOT4m8n9Bu6QnzX</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Liang, Xinhao</creator><creator>Hu, Feihu</creator><creator>Li, Xin</creator><creator>Zhang, Lin</creator><creator>Cao, Hui</creator><creator>Li, Haiming</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>4U-</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0003-3301-2713</orcidid></search><sort><creationdate>20230401</creationdate><title>Spatio-Temporal Wind Speed Prediction Based on Improved Residual Shrinkage Network</title><author>Liang, Xinhao ; Hu, Feihu ; Li, Xin ; Zhang, Lin ; Cao, Hui ; Li, Haiming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-9182055efeffc904516064f0a8d167a4b25fc160db68c9b5e1ea53bf6afe34f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Air-turbines</topic><topic>Algorithms</topic><topic>Alternative energy sources</topic><topic>Analysis</topic><topic>Climate change</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Energy development</topic><topic>Geospatial data</topic><topic>Natural environment</topic><topic>Neural networks</topic><topic>Noise control</topic><topic>Noise reduction</topic><topic>Predictions</topic><topic>Sensors</topic><topic>Signal processing</topic><topic>Speed</topic><topic>Time series</topic><topic>Turbines</topic><topic>Wind farms</topic><topic>Wind power</topic><topic>Wind speed</topic><topic>Winds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, Xinhao</creatorcontrib><creatorcontrib>Hu, Feihu</creatorcontrib><creatorcontrib>Li, Xin</creatorcontrib><creatorcontrib>Zhang, Lin</creatorcontrib><creatorcontrib>Cao, Hui</creatorcontrib><creatorcontrib>Li, Haiming</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>University Readers</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liang, Xinhao</au><au>Hu, Feihu</au><au>Li, Xin</au><au>Zhang, Lin</au><au>Cao, Hui</au><au>Li, Haiming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatio-Temporal Wind Speed Prediction Based on Improved Residual Shrinkage Network</atitle><jtitle>Sustainability</jtitle><date>2023-04-01</date><risdate>2023</risdate><volume>15</volume><issue>7</issue><spage>5871</spage><pages>5871-</pages><issn>2071-1050</issn><eissn>2071-1050</eissn><abstract>Considering the massive influx of new energy into the power system, accurate wind speed prediction is of great importance to its stability. Due to the influence of sensor accuracy and harsh natural environments, there is inevitable noise interference in original wind speed data, which adversely affects the accuracy of wind speed prediction. There are some problems associated with traditional signal processing methods when dealing with noise such as signal loss. We propose the use of a deep residual shrinkage unit based on soft activation (SDRSU) in order to reduce noise interference and ensure the integrity of original wind speed data. A deep network is constructed by stacking multiple SDRSUs to extract useful features from noisy data. Considering the spatio-temporal coupling relationship between wind turbines in a wind farm, a ST-SDRSN (soft-activation based deep spatio-temporal residual shrinkage network) will be used to model the wind speed series neighboring time property and daily periodic property. An accurate wind speed prediction can be achieved by extracting the spatial correlations between the turbines at each turbine along the time axis. We designed four depth models under the same spatio-temporal architecture to verify the advantages of the soft-activation block and the proposed ST-SDRSN model. Two datasets provided by the National Renewable Energy Laboratory (NREL) were used for our experiments. Based on different kinds of evaluation criteria in different datasets, ST-SDRSN was shown to improve prediction accuracy by 15.87%.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/su15075871</doi><orcidid>https://orcid.org/0000-0003-3301-2713</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2071-1050 |
ispartof | Sustainability, 2023-04, Vol.15 (7), p.5871 |
issn | 2071-1050 2071-1050 |
language | eng |
recordid | cdi_proquest_journals_2799790144 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute |
subjects | Accuracy Air-turbines Algorithms Alternative energy sources Analysis Climate change Datasets Deep learning Energy development Geospatial data Natural environment Neural networks Noise control Noise reduction Predictions Sensors Signal processing Speed Time series Turbines Wind farms Wind power Wind speed Winds |
title | Spatio-Temporal Wind Speed Prediction Based on Improved Residual Shrinkage Network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T23%3A28%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatio-Temporal%20Wind%20Speed%20Prediction%20Based%20on%20Improved%20Residual%20Shrinkage%20Network&rft.jtitle=Sustainability&rft.au=Liang,%20Xinhao&rft.date=2023-04-01&rft.volume=15&rft.issue=7&rft.spage=5871&rft.pages=5871-&rft.issn=2071-1050&rft.eissn=2071-1050&rft_id=info:doi/10.3390/su15075871&rft_dat=%3Cgale_proqu%3EA746948915%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2799790144&rft_id=info:pmid/&rft_galeid=A746948915&rfr_iscdi=true |