FUNCTIONAL CALCULI FOR SECTORIAL OPERATORS AND RELATED FUNCTION THEORY

We construct two bounded functional calculi for sectorial operators on Banach spaces, which enhance the functional calculus for analytic Besov functions, by extending the class of functions, generalising and sharpening estimates and adapting the calculus to the angle of sectoriality. The calculi are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Institute of Mathematics of Jussieu 2023-05, Vol.22 (3), p.1383-1463
Hauptverfasser: Batty, Charles, Gomilko, Alexander, Tomilov, Yuri
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1463
container_issue 3
container_start_page 1383
container_title Journal of the Institute of Mathematics of Jussieu
container_volume 22
creator Batty, Charles
Gomilko, Alexander
Tomilov, Yuri
description We construct two bounded functional calculi for sectorial operators on Banach spaces, which enhance the functional calculus for analytic Besov functions, by extending the class of functions, generalising and sharpening estimates and adapting the calculus to the angle of sectoriality. The calculi are based on appropriate reproducing formulas, they are compatible with standard functional calculi and they admit appropriate convergence lemmas and spectral mapping theorems. To achieve this, we develop the theory of associated function spaces in ways that are interesting and significant. As consequences of our calculi, we derive several well-known operator norm estimates and provide generalisations of some of them.
doi_str_mv 10.1017/S1474748021000414
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2799597323</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S1474748021000414</cupid><sourcerecordid>2799597323</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-3ad8c8584d2c5de8e20a0bc88a9221538489c0e1c97337cc0d47c5e2410c0bbd3</originalsourceid><addsrcrecordid>eNp1kE1Lw0AQhhdRsFZ_gLcFz9HZr2ZzDGliAyEr-Th4CslmKy3W1E176L93ayseROYwLzPv8w4MQvcEHgkQ_6kk3HclgRIA4IRfoIkbCY8Bg8tvzb3j_hrdjOMagM6oIBOUJHUeVanKwwxHYRbVWYoTVeAyjipVpG6qXuIidLrEYT7HRZyFVTzHPxiuFrEqXm_R1bJ9H83duU9RncRVtPAy9Zy6XE-zGew81vZSSyF5T7XojTQUWui0lG1AKRFMchloMEQHPmO-1tBzXwtDOQENXdezKXo45W7t8Lk3465ZD3v74U421A8C4TjKnIucXNoO42jNstna1aa1h4ZAc3xX8-ddjmFnpt10dtW_md_o_6kvC09kZg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2799597323</pqid></control><display><type>article</type><title>FUNCTIONAL CALCULI FOR SECTORIAL OPERATORS AND RELATED FUNCTION THEORY</title><source>Cambridge University Press Journals Complete</source><creator>Batty, Charles ; Gomilko, Alexander ; Tomilov, Yuri</creator><creatorcontrib>Batty, Charles ; Gomilko, Alexander ; Tomilov, Yuri</creatorcontrib><description>We construct two bounded functional calculi for sectorial operators on Banach spaces, which enhance the functional calculus for analytic Besov functions, by extending the class of functions, generalising and sharpening estimates and adapting the calculus to the angle of sectoriality. The calculi are based on appropriate reproducing formulas, they are compatible with standard functional calculi and they admit appropriate convergence lemmas and spectral mapping theorems. To achieve this, we develop the theory of associated function spaces in ways that are interesting and significant. As consequences of our calculi, we derive several well-known operator norm estimates and provide generalisations of some of them.</description><identifier>ISSN: 1474-7480</identifier><identifier>EISSN: 1475-3030</identifier><identifier>DOI: 10.1017/S1474748021000414</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Algebra ; Banach spaces ; Calculi ; Calculus ; Estimates ; Function space ; Functionals ; Generators ; Hilbert space ; Mathematical analysis ; Operators (mathematics)</subject><ispartof>Journal of the Institute of Mathematics of Jussieu, 2023-05, Vol.22 (3), p.1383-1463</ispartof><rights>The Author(s), 2021. Published by Cambridge University Press</rights><rights>The Author(s), 2021. Published by Cambridge University Press. This work is licensed under the Creative Commons Attribution License https://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-3ad8c8584d2c5de8e20a0bc88a9221538489c0e1c97337cc0d47c5e2410c0bbd3</citedby><cites>FETCH-LOGICAL-c360t-3ad8c8584d2c5de8e20a0bc88a9221538489c0e1c97337cc0d47c5e2410c0bbd3</cites><orcidid>0000-0002-1935-2001</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S1474748021000414/type/journal_article$$EHTML$$P50$$Gcambridge$$Hfree_for_read</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids></links><search><creatorcontrib>Batty, Charles</creatorcontrib><creatorcontrib>Gomilko, Alexander</creatorcontrib><creatorcontrib>Tomilov, Yuri</creatorcontrib><title>FUNCTIONAL CALCULI FOR SECTORIAL OPERATORS AND RELATED FUNCTION THEORY</title><title>Journal of the Institute of Mathematics of Jussieu</title><addtitle>J. Inst. Math. Jussieu</addtitle><description>We construct two bounded functional calculi for sectorial operators on Banach spaces, which enhance the functional calculus for analytic Besov functions, by extending the class of functions, generalising and sharpening estimates and adapting the calculus to the angle of sectoriality. The calculi are based on appropriate reproducing formulas, they are compatible with standard functional calculi and they admit appropriate convergence lemmas and spectral mapping theorems. To achieve this, we develop the theory of associated function spaces in ways that are interesting and significant. As consequences of our calculi, we derive several well-known operator norm estimates and provide generalisations of some of them.</description><subject>Algebra</subject><subject>Banach spaces</subject><subject>Calculi</subject><subject>Calculus</subject><subject>Estimates</subject><subject>Function space</subject><subject>Functionals</subject><subject>Generators</subject><subject>Hilbert space</subject><subject>Mathematical analysis</subject><subject>Operators (mathematics)</subject><issn>1474-7480</issn><issn>1475-3030</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>IKXGN</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kE1Lw0AQhhdRsFZ_gLcFz9HZr2ZzDGliAyEr-Th4CslmKy3W1E176L93ayseROYwLzPv8w4MQvcEHgkQ_6kk3HclgRIA4IRfoIkbCY8Bg8tvzb3j_hrdjOMagM6oIBOUJHUeVanKwwxHYRbVWYoTVeAyjipVpG6qXuIidLrEYT7HRZyFVTzHPxiuFrEqXm_R1bJ9H83duU9RncRVtPAy9Zy6XE-zGew81vZSSyF5T7XojTQUWui0lG1AKRFMchloMEQHPmO-1tBzXwtDOQENXdezKXo45W7t8Lk3465ZD3v74U421A8C4TjKnIucXNoO42jNstna1aa1h4ZAc3xX8-ddjmFnpt10dtW_md_o_6kvC09kZg</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Batty, Charles</creator><creator>Gomilko, Alexander</creator><creator>Tomilov, Yuri</creator><general>Cambridge University Press</general><scope>IKXGN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-1935-2001</orcidid></search><sort><creationdate>20230501</creationdate><title>FUNCTIONAL CALCULI FOR SECTORIAL OPERATORS AND RELATED FUNCTION THEORY</title><author>Batty, Charles ; Gomilko, Alexander ; Tomilov, Yuri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-3ad8c8584d2c5de8e20a0bc88a9221538489c0e1c97337cc0d47c5e2410c0bbd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algebra</topic><topic>Banach spaces</topic><topic>Calculi</topic><topic>Calculus</topic><topic>Estimates</topic><topic>Function space</topic><topic>Functionals</topic><topic>Generators</topic><topic>Hilbert space</topic><topic>Mathematical analysis</topic><topic>Operators (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Batty, Charles</creatorcontrib><creatorcontrib>Gomilko, Alexander</creatorcontrib><creatorcontrib>Tomilov, Yuri</creatorcontrib><collection>Cambridge Journals Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of the Institute of Mathematics of Jussieu</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Batty, Charles</au><au>Gomilko, Alexander</au><au>Tomilov, Yuri</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FUNCTIONAL CALCULI FOR SECTORIAL OPERATORS AND RELATED FUNCTION THEORY</atitle><jtitle>Journal of the Institute of Mathematics of Jussieu</jtitle><addtitle>J. Inst. Math. Jussieu</addtitle><date>2023-05-01</date><risdate>2023</risdate><volume>22</volume><issue>3</issue><spage>1383</spage><epage>1463</epage><pages>1383-1463</pages><issn>1474-7480</issn><eissn>1475-3030</eissn><abstract>We construct two bounded functional calculi for sectorial operators on Banach spaces, which enhance the functional calculus for analytic Besov functions, by extending the class of functions, generalising and sharpening estimates and adapting the calculus to the angle of sectoriality. The calculi are based on appropriate reproducing formulas, they are compatible with standard functional calculi and they admit appropriate convergence lemmas and spectral mapping theorems. To achieve this, we develop the theory of associated function spaces in ways that are interesting and significant. As consequences of our calculi, we derive several well-known operator norm estimates and provide generalisations of some of them.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S1474748021000414</doi><tpages>81</tpages><orcidid>https://orcid.org/0000-0002-1935-2001</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1474-7480
ispartof Journal of the Institute of Mathematics of Jussieu, 2023-05, Vol.22 (3), p.1383-1463
issn 1474-7480
1475-3030
language eng
recordid cdi_proquest_journals_2799597323
source Cambridge University Press Journals Complete
subjects Algebra
Banach spaces
Calculi
Calculus
Estimates
Function space
Functionals
Generators
Hilbert space
Mathematical analysis
Operators (mathematics)
title FUNCTIONAL CALCULI FOR SECTORIAL OPERATORS AND RELATED FUNCTION THEORY
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T03%3A49%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FUNCTIONAL%20CALCULI%20FOR%20SECTORIAL%20OPERATORS%20AND%20RELATED%20FUNCTION%20THEORY&rft.jtitle=Journal%20of%20the%20Institute%20of%20Mathematics%20of%20Jussieu&rft.au=Batty,%20Charles&rft.date=2023-05-01&rft.volume=22&rft.issue=3&rft.spage=1383&rft.epage=1463&rft.pages=1383-1463&rft.issn=1474-7480&rft.eissn=1475-3030&rft_id=info:doi/10.1017/S1474748021000414&rft_dat=%3Cproquest_cross%3E2799597323%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2799597323&rft_id=info:pmid/&rft_cupid=10_1017_S1474748021000414&rfr_iscdi=true