FUNCTIONAL CALCULI FOR SECTORIAL OPERATORS AND RELATED FUNCTION THEORY
We construct two bounded functional calculi for sectorial operators on Banach spaces, which enhance the functional calculus for analytic Besov functions, by extending the class of functions, generalising and sharpening estimates and adapting the calculus to the angle of sectoriality. The calculi are...
Gespeichert in:
Veröffentlicht in: | Journal of the Institute of Mathematics of Jussieu 2023-05, Vol.22 (3), p.1383-1463 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1463 |
---|---|
container_issue | 3 |
container_start_page | 1383 |
container_title | Journal of the Institute of Mathematics of Jussieu |
container_volume | 22 |
creator | Batty, Charles Gomilko, Alexander Tomilov, Yuri |
description | We construct two bounded functional calculi for sectorial operators on Banach spaces, which enhance the functional calculus for analytic Besov functions, by extending the class of functions, generalising and sharpening estimates and adapting the calculus to the angle of sectoriality. The calculi are based on appropriate reproducing formulas, they are compatible with standard functional calculi and they admit appropriate convergence lemmas and spectral mapping theorems. To achieve this, we develop the theory of associated function spaces in ways that are interesting and significant. As consequences of our calculi, we derive several well-known operator norm estimates and provide generalisations of some of them. |
doi_str_mv | 10.1017/S1474748021000414 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2799597323</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S1474748021000414</cupid><sourcerecordid>2799597323</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-3ad8c8584d2c5de8e20a0bc88a9221538489c0e1c97337cc0d47c5e2410c0bbd3</originalsourceid><addsrcrecordid>eNp1kE1Lw0AQhhdRsFZ_gLcFz9HZr2ZzDGliAyEr-Th4CslmKy3W1E176L93ayseROYwLzPv8w4MQvcEHgkQ_6kk3HclgRIA4IRfoIkbCY8Bg8tvzb3j_hrdjOMagM6oIBOUJHUeVanKwwxHYRbVWYoTVeAyjipVpG6qXuIidLrEYT7HRZyFVTzHPxiuFrEqXm_R1bJ9H83duU9RncRVtPAy9Zy6XE-zGew81vZSSyF5T7XojTQUWui0lG1AKRFMchloMEQHPmO-1tBzXwtDOQENXdezKXo45W7t8Lk3465ZD3v74U421A8C4TjKnIucXNoO42jNstna1aa1h4ZAc3xX8-ddjmFnpt10dtW_md_o_6kvC09kZg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2799597323</pqid></control><display><type>article</type><title>FUNCTIONAL CALCULI FOR SECTORIAL OPERATORS AND RELATED FUNCTION THEORY</title><source>Cambridge University Press Journals Complete</source><creator>Batty, Charles ; Gomilko, Alexander ; Tomilov, Yuri</creator><creatorcontrib>Batty, Charles ; Gomilko, Alexander ; Tomilov, Yuri</creatorcontrib><description>We construct two bounded functional calculi for sectorial operators on Banach spaces, which enhance the functional calculus for analytic Besov functions, by extending the class of functions, generalising and sharpening estimates and adapting the calculus to the angle of sectoriality. The calculi are based on appropriate reproducing formulas, they are compatible with standard functional calculi and they admit appropriate convergence lemmas and spectral mapping theorems. To achieve this, we develop the theory of associated function spaces in ways that are interesting and significant. As consequences of our calculi, we derive several well-known operator norm estimates and provide generalisations of some of them.</description><identifier>ISSN: 1474-7480</identifier><identifier>EISSN: 1475-3030</identifier><identifier>DOI: 10.1017/S1474748021000414</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Algebra ; Banach spaces ; Calculi ; Calculus ; Estimates ; Function space ; Functionals ; Generators ; Hilbert space ; Mathematical analysis ; Operators (mathematics)</subject><ispartof>Journal of the Institute of Mathematics of Jussieu, 2023-05, Vol.22 (3), p.1383-1463</ispartof><rights>The Author(s), 2021. Published by Cambridge University Press</rights><rights>The Author(s), 2021. Published by Cambridge University Press. This work is licensed under the Creative Commons Attribution License https://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-3ad8c8584d2c5de8e20a0bc88a9221538489c0e1c97337cc0d47c5e2410c0bbd3</citedby><cites>FETCH-LOGICAL-c360t-3ad8c8584d2c5de8e20a0bc88a9221538489c0e1c97337cc0d47c5e2410c0bbd3</cites><orcidid>0000-0002-1935-2001</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S1474748021000414/type/journal_article$$EHTML$$P50$$Gcambridge$$Hfree_for_read</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids></links><search><creatorcontrib>Batty, Charles</creatorcontrib><creatorcontrib>Gomilko, Alexander</creatorcontrib><creatorcontrib>Tomilov, Yuri</creatorcontrib><title>FUNCTIONAL CALCULI FOR SECTORIAL OPERATORS AND RELATED FUNCTION THEORY</title><title>Journal of the Institute of Mathematics of Jussieu</title><addtitle>J. Inst. Math. Jussieu</addtitle><description>We construct two bounded functional calculi for sectorial operators on Banach spaces, which enhance the functional calculus for analytic Besov functions, by extending the class of functions, generalising and sharpening estimates and adapting the calculus to the angle of sectoriality. The calculi are based on appropriate reproducing formulas, they are compatible with standard functional calculi and they admit appropriate convergence lemmas and spectral mapping theorems. To achieve this, we develop the theory of associated function spaces in ways that are interesting and significant. As consequences of our calculi, we derive several well-known operator norm estimates and provide generalisations of some of them.</description><subject>Algebra</subject><subject>Banach spaces</subject><subject>Calculi</subject><subject>Calculus</subject><subject>Estimates</subject><subject>Function space</subject><subject>Functionals</subject><subject>Generators</subject><subject>Hilbert space</subject><subject>Mathematical analysis</subject><subject>Operators (mathematics)</subject><issn>1474-7480</issn><issn>1475-3030</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>IKXGN</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kE1Lw0AQhhdRsFZ_gLcFz9HZr2ZzDGliAyEr-Th4CslmKy3W1E176L93ayseROYwLzPv8w4MQvcEHgkQ_6kk3HclgRIA4IRfoIkbCY8Bg8tvzb3j_hrdjOMagM6oIBOUJHUeVanKwwxHYRbVWYoTVeAyjipVpG6qXuIidLrEYT7HRZyFVTzHPxiuFrEqXm_R1bJ9H83duU9RncRVtPAy9Zy6XE-zGew81vZSSyF5T7XojTQUWui0lG1AKRFMchloMEQHPmO-1tBzXwtDOQENXdezKXo45W7t8Lk3465ZD3v74U421A8C4TjKnIucXNoO42jNstna1aa1h4ZAc3xX8-ddjmFnpt10dtW_md_o_6kvC09kZg</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Batty, Charles</creator><creator>Gomilko, Alexander</creator><creator>Tomilov, Yuri</creator><general>Cambridge University Press</general><scope>IKXGN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-1935-2001</orcidid></search><sort><creationdate>20230501</creationdate><title>FUNCTIONAL CALCULI FOR SECTORIAL OPERATORS AND RELATED FUNCTION THEORY</title><author>Batty, Charles ; Gomilko, Alexander ; Tomilov, Yuri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-3ad8c8584d2c5de8e20a0bc88a9221538489c0e1c97337cc0d47c5e2410c0bbd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algebra</topic><topic>Banach spaces</topic><topic>Calculi</topic><topic>Calculus</topic><topic>Estimates</topic><topic>Function space</topic><topic>Functionals</topic><topic>Generators</topic><topic>Hilbert space</topic><topic>Mathematical analysis</topic><topic>Operators (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Batty, Charles</creatorcontrib><creatorcontrib>Gomilko, Alexander</creatorcontrib><creatorcontrib>Tomilov, Yuri</creatorcontrib><collection>Cambridge Journals Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of the Institute of Mathematics of Jussieu</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Batty, Charles</au><au>Gomilko, Alexander</au><au>Tomilov, Yuri</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FUNCTIONAL CALCULI FOR SECTORIAL OPERATORS AND RELATED FUNCTION THEORY</atitle><jtitle>Journal of the Institute of Mathematics of Jussieu</jtitle><addtitle>J. Inst. Math. Jussieu</addtitle><date>2023-05-01</date><risdate>2023</risdate><volume>22</volume><issue>3</issue><spage>1383</spage><epage>1463</epage><pages>1383-1463</pages><issn>1474-7480</issn><eissn>1475-3030</eissn><abstract>We construct two bounded functional calculi for sectorial operators on Banach spaces, which enhance the functional calculus for analytic Besov functions, by extending the class of functions, generalising and sharpening estimates and adapting the calculus to the angle of sectoriality. The calculi are based on appropriate reproducing formulas, they are compatible with standard functional calculi and they admit appropriate convergence lemmas and spectral mapping theorems. To achieve this, we develop the theory of associated function spaces in ways that are interesting and significant. As consequences of our calculi, we derive several well-known operator norm estimates and provide generalisations of some of them.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S1474748021000414</doi><tpages>81</tpages><orcidid>https://orcid.org/0000-0002-1935-2001</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1474-7480 |
ispartof | Journal of the Institute of Mathematics of Jussieu, 2023-05, Vol.22 (3), p.1383-1463 |
issn | 1474-7480 1475-3030 |
language | eng |
recordid | cdi_proquest_journals_2799597323 |
source | Cambridge University Press Journals Complete |
subjects | Algebra Banach spaces Calculi Calculus Estimates Function space Functionals Generators Hilbert space Mathematical analysis Operators (mathematics) |
title | FUNCTIONAL CALCULI FOR SECTORIAL OPERATORS AND RELATED FUNCTION THEORY |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T03%3A49%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FUNCTIONAL%20CALCULI%20FOR%20SECTORIAL%20OPERATORS%20AND%20RELATED%20FUNCTION%20THEORY&rft.jtitle=Journal%20of%20the%20Institute%20of%20Mathematics%20of%20Jussieu&rft.au=Batty,%20Charles&rft.date=2023-05-01&rft.volume=22&rft.issue=3&rft.spage=1383&rft.epage=1463&rft.pages=1383-1463&rft.issn=1474-7480&rft.eissn=1475-3030&rft_id=info:doi/10.1017/S1474748021000414&rft_dat=%3Cproquest_cross%3E2799597323%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2799597323&rft_id=info:pmid/&rft_cupid=10_1017_S1474748021000414&rfr_iscdi=true |