3D printed triply periodic minimal surfaces as advanced structured packings for solvent-based CO2 capture

Point-source CO2 capture is a critical technology for industrial decarbonization and certain CO2 removal processes. Solvent-based CO2 absorption is a mature process, but the capital investment and energy requirements are substantial, especially when economic drivers for its deployment are tenuous. W...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy & environmental science 2023-04, Vol.16 (4), p.1752-1762
Hauptverfasser: Ellebracht, Nathan C, Pratanu Roy, Moore, Thomas, Gongora, Aldair E, Oyarzun, Diego I, Stolaroff, Joshuah K, Nguyen, Du T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1762
container_issue 4
container_start_page 1752
container_title Energy & environmental science
container_volume 16
creator Ellebracht, Nathan C
Pratanu Roy
Moore, Thomas
Gongora, Aldair E
Oyarzun, Diego I
Stolaroff, Joshuah K
Nguyen, Du T
description Point-source CO2 capture is a critical technology for industrial decarbonization and certain CO2 removal processes. Solvent-based CO2 absorption is a mature process, but the capital investment and energy requirements are substantial, especially when economic drivers for its deployment are tenuous. We utilized additive manufacturing and computational fluid dynamics to screen and prototype structured packings in the vast design space accessible via advanced manufacturing and computer-aided design. 3D-printed triply periodic minimal surfaces (TPMS) were tested as advanced packing geometries for CO2 capture from simulated flue gas (10% CO2) and evaluated alongside a representative industrial packing geometry, Mellapak 250Y. 1D model fits of experimental absorption data revealed 49–61% increases in mass transfer performance (kLaeff) and 91–140% increases in effective gas–liquid interfacial area in TPMS packings (Gyroid and Schwarz-D) compared to 250Y. These advanced structured packings also featured similar or better maximum fluid loads and pressure drops than 250Y, reinforcing their industrial potential. Together with the capability to natively distribute fluid shown by the TPMS geometries, the performance improvements realized could reduce absorber capital costs by more than 30%.
doi_str_mv 10.1039/d2ee03658d
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2799411481</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2799411481</sourcerecordid><originalsourceid>FETCH-LOGICAL-p219t-24602641f42f4caed151a66dd4558aac3e4a9c29bf9b3b3a79b387f1236846d03</originalsourceid><addsrcrecordid>eNo1jU1LAzEYhIMoWKsXf0HA82q-szlK1SoUetFzeTcfkrrdjUm24L93RYWBZ2CGGYSuKbmlhJs7x7wnXMnWnaAF1VI0UhN1-u-VYefoopQ9IYoRbRYo8gecchyqd7jmmPovnHyOo4sWH-IQD9DjMuUA1hcMs9wRBjuXS82TrVOebQL7EYf3gsOYcRn7ox9q00GZo9WWYQvpp3eJzgL0xV_9cYnenh5fV8_NZrt-Wd1vmsSoqQ0TijAlaBAsCAveUUlBKeeElC2A5V6Ascx0wXS846BntDpQxlUrlCN8iW5-d1MePydf6m4_TnmYL3dMGyMoFS3l37dtWcQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2799411481</pqid></control><display><type>article</type><title>3D printed triply periodic minimal surfaces as advanced structured packings for solvent-based CO2 capture</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Ellebracht, Nathan C ; Pratanu Roy ; Moore, Thomas ; Gongora, Aldair E ; Oyarzun, Diego I ; Stolaroff, Joshuah K ; Nguyen, Du T</creator><creatorcontrib>Ellebracht, Nathan C ; Pratanu Roy ; Moore, Thomas ; Gongora, Aldair E ; Oyarzun, Diego I ; Stolaroff, Joshuah K ; Nguyen, Du T</creatorcontrib><description>Point-source CO2 capture is a critical technology for industrial decarbonization and certain CO2 removal processes. Solvent-based CO2 absorption is a mature process, but the capital investment and energy requirements are substantial, especially when economic drivers for its deployment are tenuous. We utilized additive manufacturing and computational fluid dynamics to screen and prototype structured packings in the vast design space accessible via advanced manufacturing and computer-aided design. 3D-printed triply periodic minimal surfaces (TPMS) were tested as advanced packing geometries for CO2 capture from simulated flue gas (10% CO2) and evaluated alongside a representative industrial packing geometry, Mellapak 250Y. 1D model fits of experimental absorption data revealed 49–61% increases in mass transfer performance (kLaeff) and 91–140% increases in effective gas–liquid interfacial area in TPMS packings (Gyroid and Schwarz-D) compared to 250Y. These advanced structured packings also featured similar or better maximum fluid loads and pressure drops than 250Y, reinforcing their industrial potential. Together with the capability to natively distribute fluid shown by the TPMS geometries, the performance improvements realized could reduce absorber capital costs by more than 30%.</description><identifier>ISSN: 1754-5692</identifier><identifier>EISSN: 1754-5706</identifier><identifier>DOI: 10.1039/d2ee03658d</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Absorption ; CAD ; Capital costs ; Carbon dioxide ; Carbon dioxide removal ; Carbon sequestration ; Computational fluid dynamics ; Computer aided design ; Computer applications ; Decarbonization ; Energy requirements ; Flue gas ; Fluid dynamics ; Hydrodynamics ; Mass transfer ; Minimal surfaces ; One dimensional models ; Pressure drop ; Solvents ; Surface chemistry ; Three dimensional printing</subject><ispartof>Energy &amp; environmental science, 2023-04, Vol.16 (4), p.1752-1762</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Ellebracht, Nathan C</creatorcontrib><creatorcontrib>Pratanu Roy</creatorcontrib><creatorcontrib>Moore, Thomas</creatorcontrib><creatorcontrib>Gongora, Aldair E</creatorcontrib><creatorcontrib>Oyarzun, Diego I</creatorcontrib><creatorcontrib>Stolaroff, Joshuah K</creatorcontrib><creatorcontrib>Nguyen, Du T</creatorcontrib><title>3D printed triply periodic minimal surfaces as advanced structured packings for solvent-based CO2 capture</title><title>Energy &amp; environmental science</title><description>Point-source CO2 capture is a critical technology for industrial decarbonization and certain CO2 removal processes. Solvent-based CO2 absorption is a mature process, but the capital investment and energy requirements are substantial, especially when economic drivers for its deployment are tenuous. We utilized additive manufacturing and computational fluid dynamics to screen and prototype structured packings in the vast design space accessible via advanced manufacturing and computer-aided design. 3D-printed triply periodic minimal surfaces (TPMS) were tested as advanced packing geometries for CO2 capture from simulated flue gas (10% CO2) and evaluated alongside a representative industrial packing geometry, Mellapak 250Y. 1D model fits of experimental absorption data revealed 49–61% increases in mass transfer performance (kLaeff) and 91–140% increases in effective gas–liquid interfacial area in TPMS packings (Gyroid and Schwarz-D) compared to 250Y. These advanced structured packings also featured similar or better maximum fluid loads and pressure drops than 250Y, reinforcing their industrial potential. Together with the capability to natively distribute fluid shown by the TPMS geometries, the performance improvements realized could reduce absorber capital costs by more than 30%.</description><subject>Absorption</subject><subject>CAD</subject><subject>Capital costs</subject><subject>Carbon dioxide</subject><subject>Carbon dioxide removal</subject><subject>Carbon sequestration</subject><subject>Computational fluid dynamics</subject><subject>Computer aided design</subject><subject>Computer applications</subject><subject>Decarbonization</subject><subject>Energy requirements</subject><subject>Flue gas</subject><subject>Fluid dynamics</subject><subject>Hydrodynamics</subject><subject>Mass transfer</subject><subject>Minimal surfaces</subject><subject>One dimensional models</subject><subject>Pressure drop</subject><subject>Solvents</subject><subject>Surface chemistry</subject><subject>Three dimensional printing</subject><issn>1754-5692</issn><issn>1754-5706</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo1jU1LAzEYhIMoWKsXf0HA82q-szlK1SoUetFzeTcfkrrdjUm24L93RYWBZ2CGGYSuKbmlhJs7x7wnXMnWnaAF1VI0UhN1-u-VYefoopQ9IYoRbRYo8gecchyqd7jmmPovnHyOo4sWH-IQD9DjMuUA1hcMs9wRBjuXS82TrVOebQL7EYf3gsOYcRn7ox9q00GZo9WWYQvpp3eJzgL0xV_9cYnenh5fV8_NZrt-Wd1vmsSoqQ0TijAlaBAsCAveUUlBKeeElC2A5V6Ascx0wXS846BntDpQxlUrlCN8iW5-d1MePydf6m4_TnmYL3dMGyMoFS3l37dtWcQ</recordid><startdate>20230412</startdate><enddate>20230412</enddate><creator>Ellebracht, Nathan C</creator><creator>Pratanu Roy</creator><creator>Moore, Thomas</creator><creator>Gongora, Aldair E</creator><creator>Oyarzun, Diego I</creator><creator>Stolaroff, Joshuah K</creator><creator>Nguyen, Du T</creator><general>Royal Society of Chemistry</general><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20230412</creationdate><title>3D printed triply periodic minimal surfaces as advanced structured packings for solvent-based CO2 capture</title><author>Ellebracht, Nathan C ; Pratanu Roy ; Moore, Thomas ; Gongora, Aldair E ; Oyarzun, Diego I ; Stolaroff, Joshuah K ; Nguyen, Du T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p219t-24602641f42f4caed151a66dd4558aac3e4a9c29bf9b3b3a79b387f1236846d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Absorption</topic><topic>CAD</topic><topic>Capital costs</topic><topic>Carbon dioxide</topic><topic>Carbon dioxide removal</topic><topic>Carbon sequestration</topic><topic>Computational fluid dynamics</topic><topic>Computer aided design</topic><topic>Computer applications</topic><topic>Decarbonization</topic><topic>Energy requirements</topic><topic>Flue gas</topic><topic>Fluid dynamics</topic><topic>Hydrodynamics</topic><topic>Mass transfer</topic><topic>Minimal surfaces</topic><topic>One dimensional models</topic><topic>Pressure drop</topic><topic>Solvents</topic><topic>Surface chemistry</topic><topic>Three dimensional printing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ellebracht, Nathan C</creatorcontrib><creatorcontrib>Pratanu Roy</creatorcontrib><creatorcontrib>Moore, Thomas</creatorcontrib><creatorcontrib>Gongora, Aldair E</creatorcontrib><creatorcontrib>Oyarzun, Diego I</creatorcontrib><creatorcontrib>Stolaroff, Joshuah K</creatorcontrib><creatorcontrib>Nguyen, Du T</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy &amp; environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ellebracht, Nathan C</au><au>Pratanu Roy</au><au>Moore, Thomas</au><au>Gongora, Aldair E</au><au>Oyarzun, Diego I</au><au>Stolaroff, Joshuah K</au><au>Nguyen, Du T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D printed triply periodic minimal surfaces as advanced structured packings for solvent-based CO2 capture</atitle><jtitle>Energy &amp; environmental science</jtitle><date>2023-04-12</date><risdate>2023</risdate><volume>16</volume><issue>4</issue><spage>1752</spage><epage>1762</epage><pages>1752-1762</pages><issn>1754-5692</issn><eissn>1754-5706</eissn><abstract>Point-source CO2 capture is a critical technology for industrial decarbonization and certain CO2 removal processes. Solvent-based CO2 absorption is a mature process, but the capital investment and energy requirements are substantial, especially when economic drivers for its deployment are tenuous. We utilized additive manufacturing and computational fluid dynamics to screen and prototype structured packings in the vast design space accessible via advanced manufacturing and computer-aided design. 3D-printed triply periodic minimal surfaces (TPMS) were tested as advanced packing geometries for CO2 capture from simulated flue gas (10% CO2) and evaluated alongside a representative industrial packing geometry, Mellapak 250Y. 1D model fits of experimental absorption data revealed 49–61% increases in mass transfer performance (kLaeff) and 91–140% increases in effective gas–liquid interfacial area in TPMS packings (Gyroid and Schwarz-D) compared to 250Y. These advanced structured packings also featured similar or better maximum fluid loads and pressure drops than 250Y, reinforcing their industrial potential. Together with the capability to natively distribute fluid shown by the TPMS geometries, the performance improvements realized could reduce absorber capital costs by more than 30%.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d2ee03658d</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1754-5692
ispartof Energy & environmental science, 2023-04, Vol.16 (4), p.1752-1762
issn 1754-5692
1754-5706
language eng
recordid cdi_proquest_journals_2799411481
source Royal Society Of Chemistry Journals 2008-
subjects Absorption
CAD
Capital costs
Carbon dioxide
Carbon dioxide removal
Carbon sequestration
Computational fluid dynamics
Computer aided design
Computer applications
Decarbonization
Energy requirements
Flue gas
Fluid dynamics
Hydrodynamics
Mass transfer
Minimal surfaces
One dimensional models
Pressure drop
Solvents
Surface chemistry
Three dimensional printing
title 3D printed triply periodic minimal surfaces as advanced structured packings for solvent-based CO2 capture
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T12%3A47%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20printed%20triply%20periodic%20minimal%20surfaces%20as%20advanced%20structured%20packings%20for%20solvent-based%20CO2%20capture&rft.jtitle=Energy%20&%20environmental%20science&rft.au=Ellebracht,%20Nathan%20C&rft.date=2023-04-12&rft.volume=16&rft.issue=4&rft.spage=1752&rft.epage=1762&rft.pages=1752-1762&rft.issn=1754-5692&rft.eissn=1754-5706&rft_id=info:doi/10.1039/d2ee03658d&rft_dat=%3Cproquest%3E2799411481%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2799411481&rft_id=info:pmid/&rfr_iscdi=true