3D printed triply periodic minimal surfaces as advanced structured packings for solvent-based CO2 capture
Point-source CO2 capture is a critical technology for industrial decarbonization and certain CO2 removal processes. Solvent-based CO2 absorption is a mature process, but the capital investment and energy requirements are substantial, especially when economic drivers for its deployment are tenuous. W...
Gespeichert in:
Veröffentlicht in: | Energy & environmental science 2023-04, Vol.16 (4), p.1752-1762 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1762 |
---|---|
container_issue | 4 |
container_start_page | 1752 |
container_title | Energy & environmental science |
container_volume | 16 |
creator | Ellebracht, Nathan C Pratanu Roy Moore, Thomas Gongora, Aldair E Oyarzun, Diego I Stolaroff, Joshuah K Nguyen, Du T |
description | Point-source CO2 capture is a critical technology for industrial decarbonization and certain CO2 removal processes. Solvent-based CO2 absorption is a mature process, but the capital investment and energy requirements are substantial, especially when economic drivers for its deployment are tenuous. We utilized additive manufacturing and computational fluid dynamics to screen and prototype structured packings in the vast design space accessible via advanced manufacturing and computer-aided design. 3D-printed triply periodic minimal surfaces (TPMS) were tested as advanced packing geometries for CO2 capture from simulated flue gas (10% CO2) and evaluated alongside a representative industrial packing geometry, Mellapak 250Y. 1D model fits of experimental absorption data revealed 49–61% increases in mass transfer performance (kLaeff) and 91–140% increases in effective gas–liquid interfacial area in TPMS packings (Gyroid and Schwarz-D) compared to 250Y. These advanced structured packings also featured similar or better maximum fluid loads and pressure drops than 250Y, reinforcing their industrial potential. Together with the capability to natively distribute fluid shown by the TPMS geometries, the performance improvements realized could reduce absorber capital costs by more than 30%. |
doi_str_mv | 10.1039/d2ee03658d |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2799411481</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2799411481</sourcerecordid><originalsourceid>FETCH-LOGICAL-p219t-24602641f42f4caed151a66dd4558aac3e4a9c29bf9b3b3a79b387f1236846d03</originalsourceid><addsrcrecordid>eNo1jU1LAzEYhIMoWKsXf0HA82q-szlK1SoUetFzeTcfkrrdjUm24L93RYWBZ2CGGYSuKbmlhJs7x7wnXMnWnaAF1VI0UhN1-u-VYefoopQ9IYoRbRYo8gecchyqd7jmmPovnHyOo4sWH-IQD9DjMuUA1hcMs9wRBjuXS82TrVOebQL7EYf3gsOYcRn7ox9q00GZo9WWYQvpp3eJzgL0xV_9cYnenh5fV8_NZrt-Wd1vmsSoqQ0TijAlaBAsCAveUUlBKeeElC2A5V6Ascx0wXS846BntDpQxlUrlCN8iW5-d1MePydf6m4_TnmYL3dMGyMoFS3l37dtWcQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2799411481</pqid></control><display><type>article</type><title>3D printed triply periodic minimal surfaces as advanced structured packings for solvent-based CO2 capture</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Ellebracht, Nathan C ; Pratanu Roy ; Moore, Thomas ; Gongora, Aldair E ; Oyarzun, Diego I ; Stolaroff, Joshuah K ; Nguyen, Du T</creator><creatorcontrib>Ellebracht, Nathan C ; Pratanu Roy ; Moore, Thomas ; Gongora, Aldair E ; Oyarzun, Diego I ; Stolaroff, Joshuah K ; Nguyen, Du T</creatorcontrib><description>Point-source CO2 capture is a critical technology for industrial decarbonization and certain CO2 removal processes. Solvent-based CO2 absorption is a mature process, but the capital investment and energy requirements are substantial, especially when economic drivers for its deployment are tenuous. We utilized additive manufacturing and computational fluid dynamics to screen and prototype structured packings in the vast design space accessible via advanced manufacturing and computer-aided design. 3D-printed triply periodic minimal surfaces (TPMS) were tested as advanced packing geometries for CO2 capture from simulated flue gas (10% CO2) and evaluated alongside a representative industrial packing geometry, Mellapak 250Y. 1D model fits of experimental absorption data revealed 49–61% increases in mass transfer performance (kLaeff) and 91–140% increases in effective gas–liquid interfacial area in TPMS packings (Gyroid and Schwarz-D) compared to 250Y. These advanced structured packings also featured similar or better maximum fluid loads and pressure drops than 250Y, reinforcing their industrial potential. Together with the capability to natively distribute fluid shown by the TPMS geometries, the performance improvements realized could reduce absorber capital costs by more than 30%.</description><identifier>ISSN: 1754-5692</identifier><identifier>EISSN: 1754-5706</identifier><identifier>DOI: 10.1039/d2ee03658d</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Absorption ; CAD ; Capital costs ; Carbon dioxide ; Carbon dioxide removal ; Carbon sequestration ; Computational fluid dynamics ; Computer aided design ; Computer applications ; Decarbonization ; Energy requirements ; Flue gas ; Fluid dynamics ; Hydrodynamics ; Mass transfer ; Minimal surfaces ; One dimensional models ; Pressure drop ; Solvents ; Surface chemistry ; Three dimensional printing</subject><ispartof>Energy & environmental science, 2023-04, Vol.16 (4), p.1752-1762</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Ellebracht, Nathan C</creatorcontrib><creatorcontrib>Pratanu Roy</creatorcontrib><creatorcontrib>Moore, Thomas</creatorcontrib><creatorcontrib>Gongora, Aldair E</creatorcontrib><creatorcontrib>Oyarzun, Diego I</creatorcontrib><creatorcontrib>Stolaroff, Joshuah K</creatorcontrib><creatorcontrib>Nguyen, Du T</creatorcontrib><title>3D printed triply periodic minimal surfaces as advanced structured packings for solvent-based CO2 capture</title><title>Energy & environmental science</title><description>Point-source CO2 capture is a critical technology for industrial decarbonization and certain CO2 removal processes. Solvent-based CO2 absorption is a mature process, but the capital investment and energy requirements are substantial, especially when economic drivers for its deployment are tenuous. We utilized additive manufacturing and computational fluid dynamics to screen and prototype structured packings in the vast design space accessible via advanced manufacturing and computer-aided design. 3D-printed triply periodic minimal surfaces (TPMS) were tested as advanced packing geometries for CO2 capture from simulated flue gas (10% CO2) and evaluated alongside a representative industrial packing geometry, Mellapak 250Y. 1D model fits of experimental absorption data revealed 49–61% increases in mass transfer performance (kLaeff) and 91–140% increases in effective gas–liquid interfacial area in TPMS packings (Gyroid and Schwarz-D) compared to 250Y. These advanced structured packings also featured similar or better maximum fluid loads and pressure drops than 250Y, reinforcing their industrial potential. Together with the capability to natively distribute fluid shown by the TPMS geometries, the performance improvements realized could reduce absorber capital costs by more than 30%.</description><subject>Absorption</subject><subject>CAD</subject><subject>Capital costs</subject><subject>Carbon dioxide</subject><subject>Carbon dioxide removal</subject><subject>Carbon sequestration</subject><subject>Computational fluid dynamics</subject><subject>Computer aided design</subject><subject>Computer applications</subject><subject>Decarbonization</subject><subject>Energy requirements</subject><subject>Flue gas</subject><subject>Fluid dynamics</subject><subject>Hydrodynamics</subject><subject>Mass transfer</subject><subject>Minimal surfaces</subject><subject>One dimensional models</subject><subject>Pressure drop</subject><subject>Solvents</subject><subject>Surface chemistry</subject><subject>Three dimensional printing</subject><issn>1754-5692</issn><issn>1754-5706</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo1jU1LAzEYhIMoWKsXf0HA82q-szlK1SoUetFzeTcfkrrdjUm24L93RYWBZ2CGGYSuKbmlhJs7x7wnXMnWnaAF1VI0UhN1-u-VYefoopQ9IYoRbRYo8gecchyqd7jmmPovnHyOo4sWH-IQD9DjMuUA1hcMs9wRBjuXS82TrVOebQL7EYf3gsOYcRn7ox9q00GZo9WWYQvpp3eJzgL0xV_9cYnenh5fV8_NZrt-Wd1vmsSoqQ0TijAlaBAsCAveUUlBKeeElC2A5V6Ascx0wXS846BntDpQxlUrlCN8iW5-d1MePydf6m4_TnmYL3dMGyMoFS3l37dtWcQ</recordid><startdate>20230412</startdate><enddate>20230412</enddate><creator>Ellebracht, Nathan C</creator><creator>Pratanu Roy</creator><creator>Moore, Thomas</creator><creator>Gongora, Aldair E</creator><creator>Oyarzun, Diego I</creator><creator>Stolaroff, Joshuah K</creator><creator>Nguyen, Du T</creator><general>Royal Society of Chemistry</general><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20230412</creationdate><title>3D printed triply periodic minimal surfaces as advanced structured packings for solvent-based CO2 capture</title><author>Ellebracht, Nathan C ; Pratanu Roy ; Moore, Thomas ; Gongora, Aldair E ; Oyarzun, Diego I ; Stolaroff, Joshuah K ; Nguyen, Du T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p219t-24602641f42f4caed151a66dd4558aac3e4a9c29bf9b3b3a79b387f1236846d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Absorption</topic><topic>CAD</topic><topic>Capital costs</topic><topic>Carbon dioxide</topic><topic>Carbon dioxide removal</topic><topic>Carbon sequestration</topic><topic>Computational fluid dynamics</topic><topic>Computer aided design</topic><topic>Computer applications</topic><topic>Decarbonization</topic><topic>Energy requirements</topic><topic>Flue gas</topic><topic>Fluid dynamics</topic><topic>Hydrodynamics</topic><topic>Mass transfer</topic><topic>Minimal surfaces</topic><topic>One dimensional models</topic><topic>Pressure drop</topic><topic>Solvents</topic><topic>Surface chemistry</topic><topic>Three dimensional printing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ellebracht, Nathan C</creatorcontrib><creatorcontrib>Pratanu Roy</creatorcontrib><creatorcontrib>Moore, Thomas</creatorcontrib><creatorcontrib>Gongora, Aldair E</creatorcontrib><creatorcontrib>Oyarzun, Diego I</creatorcontrib><creatorcontrib>Stolaroff, Joshuah K</creatorcontrib><creatorcontrib>Nguyen, Du T</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy & environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ellebracht, Nathan C</au><au>Pratanu Roy</au><au>Moore, Thomas</au><au>Gongora, Aldair E</au><au>Oyarzun, Diego I</au><au>Stolaroff, Joshuah K</au><au>Nguyen, Du T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D printed triply periodic minimal surfaces as advanced structured packings for solvent-based CO2 capture</atitle><jtitle>Energy & environmental science</jtitle><date>2023-04-12</date><risdate>2023</risdate><volume>16</volume><issue>4</issue><spage>1752</spage><epage>1762</epage><pages>1752-1762</pages><issn>1754-5692</issn><eissn>1754-5706</eissn><abstract>Point-source CO2 capture is a critical technology for industrial decarbonization and certain CO2 removal processes. Solvent-based CO2 absorption is a mature process, but the capital investment and energy requirements are substantial, especially when economic drivers for its deployment are tenuous. We utilized additive manufacturing and computational fluid dynamics to screen and prototype structured packings in the vast design space accessible via advanced manufacturing and computer-aided design. 3D-printed triply periodic minimal surfaces (TPMS) were tested as advanced packing geometries for CO2 capture from simulated flue gas (10% CO2) and evaluated alongside a representative industrial packing geometry, Mellapak 250Y. 1D model fits of experimental absorption data revealed 49–61% increases in mass transfer performance (kLaeff) and 91–140% increases in effective gas–liquid interfacial area in TPMS packings (Gyroid and Schwarz-D) compared to 250Y. These advanced structured packings also featured similar or better maximum fluid loads and pressure drops than 250Y, reinforcing their industrial potential. Together with the capability to natively distribute fluid shown by the TPMS geometries, the performance improvements realized could reduce absorber capital costs by more than 30%.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d2ee03658d</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1754-5692 |
ispartof | Energy & environmental science, 2023-04, Vol.16 (4), p.1752-1762 |
issn | 1754-5692 1754-5706 |
language | eng |
recordid | cdi_proquest_journals_2799411481 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Absorption CAD Capital costs Carbon dioxide Carbon dioxide removal Carbon sequestration Computational fluid dynamics Computer aided design Computer applications Decarbonization Energy requirements Flue gas Fluid dynamics Hydrodynamics Mass transfer Minimal surfaces One dimensional models Pressure drop Solvents Surface chemistry Three dimensional printing |
title | 3D printed triply periodic minimal surfaces as advanced structured packings for solvent-based CO2 capture |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T12%3A47%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20printed%20triply%20periodic%20minimal%20surfaces%20as%20advanced%20structured%20packings%20for%20solvent-based%20CO2%20capture&rft.jtitle=Energy%20&%20environmental%20science&rft.au=Ellebracht,%20Nathan%20C&rft.date=2023-04-12&rft.volume=16&rft.issue=4&rft.spage=1752&rft.epage=1762&rft.pages=1752-1762&rft.issn=1754-5692&rft.eissn=1754-5706&rft_id=info:doi/10.1039/d2ee03658d&rft_dat=%3Cproquest%3E2799411481%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2799411481&rft_id=info:pmid/&rfr_iscdi=true |