(\mu^2\)-SGD: Stable Stochastic Optimization via a Double Momentum Mechanism

We consider stochastic convex optimization problems where the objective is an expectation over smooth functions. For this setting we suggest a novel gradient estimate that combines two recent mechanism that are related to notion of momentum. Then, we design an SGD-style algorithm as well as an accel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-04
1. Verfasser: Levy, Kfir Y
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Levy, Kfir Y
description We consider stochastic convex optimization problems where the objective is an expectation over smooth functions. For this setting we suggest a novel gradient estimate that combines two recent mechanism that are related to notion of momentum. Then, we design an SGD-style algorithm as well as an accelerated version that make use of this new estimator, and demonstrate the robustness of these new approaches to the choice of the learning rate. Concretely, we show that these approaches obtain the optimal convergence rates for both noiseless and noisy case with the same choice of fixed learning rate. Moreover, for the noisy case we show that these approaches achieve the same optimal bound for a very wide range of learning rates.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2799284885</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2799284885</sourcerecordid><originalsourceid>FETCH-proquest_journals_27992848853</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTw0YjJLY0zitHUDXZ3sVIILklMykkFUvnJGYnFJZnJCv4FJZm5mVWJJZn5eQplmYkKiQou-aUgRb75ual5JaW5Cr6pQMV5mcW5PAysaYk5xam8UJqbQdnNNcTZQ7egKL-wNLW4JD4rv7QoDygVb2RuaWlkYWJhYWpMnCoAiks8Zw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2799284885</pqid></control><display><type>article</type><title>(\mu^2\)-SGD: Stable Stochastic Optimization via a Double Momentum Mechanism</title><source>Free E- Journals</source><creator>Levy, Kfir Y</creator><creatorcontrib>Levy, Kfir Y</creatorcontrib><description>We consider stochastic convex optimization problems where the objective is an expectation over smooth functions. For this setting we suggest a novel gradient estimate that combines two recent mechanism that are related to notion of momentum. Then, we design an SGD-style algorithm as well as an accelerated version that make use of this new estimator, and demonstrate the robustness of these new approaches to the choice of the learning rate. Concretely, we show that these approaches obtain the optimal convergence rates for both noiseless and noisy case with the same choice of fixed learning rate. Moreover, for the noisy case we show that these approaches achieve the same optimal bound for a very wide range of learning rates.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Computational geometry ; Convexity ; Learning ; Momentum ; Optimization</subject><ispartof>arXiv.org, 2023-04</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Levy, Kfir Y</creatorcontrib><title>(\mu^2\)-SGD: Stable Stochastic Optimization via a Double Momentum Mechanism</title><title>arXiv.org</title><description>We consider stochastic convex optimization problems where the objective is an expectation over smooth functions. For this setting we suggest a novel gradient estimate that combines two recent mechanism that are related to notion of momentum. Then, we design an SGD-style algorithm as well as an accelerated version that make use of this new estimator, and demonstrate the robustness of these new approaches to the choice of the learning rate. Concretely, we show that these approaches obtain the optimal convergence rates for both noiseless and noisy case with the same choice of fixed learning rate. Moreover, for the noisy case we show that these approaches achieve the same optimal bound for a very wide range of learning rates.</description><subject>Algorithms</subject><subject>Computational geometry</subject><subject>Convexity</subject><subject>Learning</subject><subject>Momentum</subject><subject>Optimization</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTw0YjJLY0zitHUDXZ3sVIILklMykkFUvnJGYnFJZnJCv4FJZm5mVWJJZn5eQplmYkKiQou-aUgRb75ual5JaW5Cr6pQMV5mcW5PAysaYk5xam8UJqbQdnNNcTZQ7egKL-wNLW4JD4rv7QoDygVb2RuaWlkYWJhYWpMnCoAiks8Zw</recordid><startdate>20230409</startdate><enddate>20230409</enddate><creator>Levy, Kfir Y</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230409</creationdate><title>(\mu^2\)-SGD: Stable Stochastic Optimization via a Double Momentum Mechanism</title><author>Levy, Kfir Y</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27992848853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Computational geometry</topic><topic>Convexity</topic><topic>Learning</topic><topic>Momentum</topic><topic>Optimization</topic><toplevel>online_resources</toplevel><creatorcontrib>Levy, Kfir Y</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Levy, Kfir Y</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>(\mu^2\)-SGD: Stable Stochastic Optimization via a Double Momentum Mechanism</atitle><jtitle>arXiv.org</jtitle><date>2023-04-09</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>We consider stochastic convex optimization problems where the objective is an expectation over smooth functions. For this setting we suggest a novel gradient estimate that combines two recent mechanism that are related to notion of momentum. Then, we design an SGD-style algorithm as well as an accelerated version that make use of this new estimator, and demonstrate the robustness of these new approaches to the choice of the learning rate. Concretely, we show that these approaches obtain the optimal convergence rates for both noiseless and noisy case with the same choice of fixed learning rate. Moreover, for the noisy case we show that these approaches achieve the same optimal bound for a very wide range of learning rates.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-04
issn 2331-8422
language eng
recordid cdi_proquest_journals_2799284885
source Free E- Journals
subjects Algorithms
Computational geometry
Convexity
Learning
Momentum
Optimization
title (\mu^2\)-SGD: Stable Stochastic Optimization via a Double Momentum Mechanism
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T19%3A19%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=(%5Cmu%5E2%5C)-SGD:%20Stable%20Stochastic%20Optimization%20via%20a%20Double%20Momentum%20Mechanism&rft.jtitle=arXiv.org&rft.au=Levy,%20Kfir%20Y&rft.date=2023-04-09&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2799284885%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2799284885&rft_id=info:pmid/&rfr_iscdi=true