(\mu^2\)-SGD: Stable Stochastic Optimization via a Double Momentum Mechanism
We consider stochastic convex optimization problems where the objective is an expectation over smooth functions. For this setting we suggest a novel gradient estimate that combines two recent mechanism that are related to notion of momentum. Then, we design an SGD-style algorithm as well as an accel...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-04 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Levy, Kfir Y |
description | We consider stochastic convex optimization problems where the objective is an expectation over smooth functions. For this setting we suggest a novel gradient estimate that combines two recent mechanism that are related to notion of momentum. Then, we design an SGD-style algorithm as well as an accelerated version that make use of this new estimator, and demonstrate the robustness of these new approaches to the choice of the learning rate. Concretely, we show that these approaches obtain the optimal convergence rates for both noiseless and noisy case with the same choice of fixed learning rate. Moreover, for the noisy case we show that these approaches achieve the same optimal bound for a very wide range of learning rates. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2799284885</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2799284885</sourcerecordid><originalsourceid>FETCH-proquest_journals_27992848853</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTw0YjJLY0zitHUDXZ3sVIILklMykkFUvnJGYnFJZnJCv4FJZm5mVWJJZn5eQplmYkKiQou-aUgRb75ual5JaW5Cr6pQMV5mcW5PAysaYk5xam8UJqbQdnNNcTZQ7egKL-wNLW4JD4rv7QoDygVb2RuaWlkYWJhYWpMnCoAiks8Zw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2799284885</pqid></control><display><type>article</type><title>(\mu^2\)-SGD: Stable Stochastic Optimization via a Double Momentum Mechanism</title><source>Free E- Journals</source><creator>Levy, Kfir Y</creator><creatorcontrib>Levy, Kfir Y</creatorcontrib><description>We consider stochastic convex optimization problems where the objective is an expectation over smooth functions. For this setting we suggest a novel gradient estimate that combines two recent mechanism that are related to notion of momentum. Then, we design an SGD-style algorithm as well as an accelerated version that make use of this new estimator, and demonstrate the robustness of these new approaches to the choice of the learning rate. Concretely, we show that these approaches obtain the optimal convergence rates for both noiseless and noisy case with the same choice of fixed learning rate. Moreover, for the noisy case we show that these approaches achieve the same optimal bound for a very wide range of learning rates.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Computational geometry ; Convexity ; Learning ; Momentum ; Optimization</subject><ispartof>arXiv.org, 2023-04</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Levy, Kfir Y</creatorcontrib><title>(\mu^2\)-SGD: Stable Stochastic Optimization via a Double Momentum Mechanism</title><title>arXiv.org</title><description>We consider stochastic convex optimization problems where the objective is an expectation over smooth functions. For this setting we suggest a novel gradient estimate that combines two recent mechanism that are related to notion of momentum. Then, we design an SGD-style algorithm as well as an accelerated version that make use of this new estimator, and demonstrate the robustness of these new approaches to the choice of the learning rate. Concretely, we show that these approaches obtain the optimal convergence rates for both noiseless and noisy case with the same choice of fixed learning rate. Moreover, for the noisy case we show that these approaches achieve the same optimal bound for a very wide range of learning rates.</description><subject>Algorithms</subject><subject>Computational geometry</subject><subject>Convexity</subject><subject>Learning</subject><subject>Momentum</subject><subject>Optimization</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTw0YjJLY0zitHUDXZ3sVIILklMykkFUvnJGYnFJZnJCv4FJZm5mVWJJZn5eQplmYkKiQou-aUgRb75ual5JaW5Cr6pQMV5mcW5PAysaYk5xam8UJqbQdnNNcTZQ7egKL-wNLW4JD4rv7QoDygVb2RuaWlkYWJhYWpMnCoAiks8Zw</recordid><startdate>20230409</startdate><enddate>20230409</enddate><creator>Levy, Kfir Y</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230409</creationdate><title>(\mu^2\)-SGD: Stable Stochastic Optimization via a Double Momentum Mechanism</title><author>Levy, Kfir Y</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27992848853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Computational geometry</topic><topic>Convexity</topic><topic>Learning</topic><topic>Momentum</topic><topic>Optimization</topic><toplevel>online_resources</toplevel><creatorcontrib>Levy, Kfir Y</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Levy, Kfir Y</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>(\mu^2\)-SGD: Stable Stochastic Optimization via a Double Momentum Mechanism</atitle><jtitle>arXiv.org</jtitle><date>2023-04-09</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>We consider stochastic convex optimization problems where the objective is an expectation over smooth functions. For this setting we suggest a novel gradient estimate that combines two recent mechanism that are related to notion of momentum. Then, we design an SGD-style algorithm as well as an accelerated version that make use of this new estimator, and demonstrate the robustness of these new approaches to the choice of the learning rate. Concretely, we show that these approaches obtain the optimal convergence rates for both noiseless and noisy case with the same choice of fixed learning rate. Moreover, for the noisy case we show that these approaches achieve the same optimal bound for a very wide range of learning rates.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-04 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2799284885 |
source | Free E- Journals |
subjects | Algorithms Computational geometry Convexity Learning Momentum Optimization |
title | (\mu^2\)-SGD: Stable Stochastic Optimization via a Double Momentum Mechanism |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T19%3A19%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=(%5Cmu%5E2%5C)-SGD:%20Stable%20Stochastic%20Optimization%20via%20a%20Double%20Momentum%20Mechanism&rft.jtitle=arXiv.org&rft.au=Levy,%20Kfir%20Y&rft.date=2023-04-09&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2799284885%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2799284885&rft_id=info:pmid/&rfr_iscdi=true |