A power-efficient high GBW operational amplifier with its analog baseband IC implementation in 40-nm CMOS technology

This paper presented a power-efficient, relatively high voltage gain, high GBW (gain-bandwidth-product) operational amplifier (OPAMP) with a pole cancellation technique and adaptive common-mode (CM) bias circuit. A typical two-stage topology is adopted in the OPAMP prototype design while the 1st amp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analog integrated circuits and signal processing 2023-03, Vol.114 (3), p.475-482
Hauptverfasser: Jiang, Yu, Cheng, Xu, Han, Jing-Yu, Guo, Gui-Liang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 482
container_issue 3
container_start_page 475
container_title Analog integrated circuits and signal processing
container_volume 114
creator Jiang, Yu
Cheng, Xu
Han, Jing-Yu
Guo, Gui-Liang
description This paper presented a power-efficient, relatively high voltage gain, high GBW (gain-bandwidth-product) operational amplifier (OPAMP) with a pole cancellation technique and adaptive common-mode (CM) bias circuit. A typical two-stage topology is adopted in the OPAMP prototype design while the 1st amplifier stage is in class-A mode for high voltage gain and the 2nd buffer stage is in class-AB mode for both large drive capability and additional voltage gain. In order to improve GBW and set appropriate CM voltages, an actively biased resistor–capacitor pair is inserted in between the two stages with the overall frequency response of the OPAMP nearly unaffected. Thus, a little increase in area and power consumption is traded for pole cancellation while adaptive CM bias circuits are introduced to critical current-biased transistors with the outcome of excellent CM voltage stability across all process, voltage, temperature corners. In order to verify the practicality of the proposed OPAMP, a fully programmable analog baseband IC is designed with three key blocks, including trans-impedance amplifier, LPF (low pass filter)/HPF (high pass filter)/PGA (programmable gain amplifier) hybrid bi-quads, test buffer and power supply management units, and its − 3 dB bandwidth with voltage gain is fully programmable. What is more, two class-AB power efficient PMOS-only buffers are designed to ensure input and output test adaptability. Fabricated in a 40-nm Bulk CMOS process, the chip prototype achieves an LPF’s − 3 dB bandwidth of 28–35 MHz with 3-bit digital control and 1 MHz/step programmability, an HPF’s − 3 dB bandwidth of 3–15 MHz with 3-bit digital control, and a voltage gain of 0–63 dB with 6-bit digital control and 1 dB/step programmability. With a 20 dB voltage gain, HPF corner at 3 MHz and LPF corner at 35 MHz, the measured output P −1 dB is 12.1 dBm@20 MHz, and the output IP3 is 21.1 dBm@20 MHz. The total current consumption is around 3 mA@1.5 V and 2 mA@2.5 V.
doi_str_mv 10.1007/s10470-023-02136-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2799107893</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2799107893</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-7dcda048f3978d5141992bbc206b05408f9641055bbfc1cdd019b9416fd6757d3</originalsourceid><addsrcrecordid>eNp9kEFLwzAUx4MoOKdfwFPAc_SlaZvmOIvOwWQHFY8hbZM1Y21q0jH27Y2b4M3D48Hj9_vz-CN0S-GeAvCHQCHlQCBhcSjLCZyhCc04I1RwcY4mIJKMUGBwia5C2ABAwlOYoHGGB7fXnmhjbG11P-LWrls8f_zEbtBejdb1aotVN2ytsdrjvR1bbMeAVby7Na5U0JXqG7wosY2U7mLIUcO2xymQvsPl6-oNj7puexeVwzW6MGob9M3vnqKP56f38oUsV_NFOVuSmlExEt7UjYK0MEzwosloSoVIqqpOIK8gS6EwIk8pZFlVmZrWTQNUVCKluWlynvGGTdHdKXfw7munwyg3bufj20EmXAgKvBAsUsmJqr0LwWsjB2875Q-SgvxpV57albFdeWxXQpTYSQoR7tfa_0X_Y30D-RJ8XQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2799107893</pqid></control><display><type>article</type><title>A power-efficient high GBW operational amplifier with its analog baseband IC implementation in 40-nm CMOS technology</title><source>SpringerLink Journals</source><creator>Jiang, Yu ; Cheng, Xu ; Han, Jing-Yu ; Guo, Gui-Liang</creator><creatorcontrib>Jiang, Yu ; Cheng, Xu ; Han, Jing-Yu ; Guo, Gui-Liang</creatorcontrib><description>This paper presented a power-efficient, relatively high voltage gain, high GBW (gain-bandwidth-product) operational amplifier (OPAMP) with a pole cancellation technique and adaptive common-mode (CM) bias circuit. A typical two-stage topology is adopted in the OPAMP prototype design while the 1st amplifier stage is in class-A mode for high voltage gain and the 2nd buffer stage is in class-AB mode for both large drive capability and additional voltage gain. In order to improve GBW and set appropriate CM voltages, an actively biased resistor–capacitor pair is inserted in between the two stages with the overall frequency response of the OPAMP nearly unaffected. Thus, a little increase in area and power consumption is traded for pole cancellation while adaptive CM bias circuits are introduced to critical current-biased transistors with the outcome of excellent CM voltage stability across all process, voltage, temperature corners. In order to verify the practicality of the proposed OPAMP, a fully programmable analog baseband IC is designed with three key blocks, including trans-impedance amplifier, LPF (low pass filter)/HPF (high pass filter)/PGA (programmable gain amplifier) hybrid bi-quads, test buffer and power supply management units, and its − 3 dB bandwidth with voltage gain is fully programmable. What is more, two class-AB power efficient PMOS-only buffers are designed to ensure input and output test adaptability. Fabricated in a 40-nm Bulk CMOS process, the chip prototype achieves an LPF’s − 3 dB bandwidth of 28–35 MHz with 3-bit digital control and 1 MHz/step programmability, an HPF’s − 3 dB bandwidth of 3–15 MHz with 3-bit digital control, and a voltage gain of 0–63 dB with 6-bit digital control and 1 dB/step programmability. With a 20 dB voltage gain, HPF corner at 3 MHz and LPF corner at 35 MHz, the measured output P −1 dB is 12.1 dBm@20 MHz, and the output IP3 is 21.1 dBm@20 MHz. The total current consumption is around 3 mA@1.5 V and 2 mA@2.5 V.</description><identifier>ISSN: 0925-1030</identifier><identifier>EISSN: 1573-1979</identifier><identifier>DOI: 10.1007/s10470-023-02136-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Adaptability ; Amplification ; Bandwidths ; Bias ; Buffers ; Circuit design ; Circuits and Systems ; CMOS ; Critical current (superconductivity) ; Electrical Engineering ; Engineering ; Frequency response ; High pass filters ; High voltage ; High voltages ; Integrated circuits ; Low pass filters ; Mixed Signal Letter ; Operational amplifiers ; Power consumption ; Prototypes ; Signal,Image and Speech Processing ; Topology ; Transistors ; Voltage gain ; Voltage stability</subject><ispartof>Analog integrated circuits and signal processing, 2023-03, Vol.114 (3), p.475-482</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-7dcda048f3978d5141992bbc206b05408f9641055bbfc1cdd019b9416fd6757d3</citedby><cites>FETCH-LOGICAL-c319t-7dcda048f3978d5141992bbc206b05408f9641055bbfc1cdd019b9416fd6757d3</cites><orcidid>0000-0002-2203-3191</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10470-023-02136-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10470-023-02136-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Jiang, Yu</creatorcontrib><creatorcontrib>Cheng, Xu</creatorcontrib><creatorcontrib>Han, Jing-Yu</creatorcontrib><creatorcontrib>Guo, Gui-Liang</creatorcontrib><title>A power-efficient high GBW operational amplifier with its analog baseband IC implementation in 40-nm CMOS technology</title><title>Analog integrated circuits and signal processing</title><addtitle>Analog Integr Circ Sig Process</addtitle><description>This paper presented a power-efficient, relatively high voltage gain, high GBW (gain-bandwidth-product) operational amplifier (OPAMP) with a pole cancellation technique and adaptive common-mode (CM) bias circuit. A typical two-stage topology is adopted in the OPAMP prototype design while the 1st amplifier stage is in class-A mode for high voltage gain and the 2nd buffer stage is in class-AB mode for both large drive capability and additional voltage gain. In order to improve GBW and set appropriate CM voltages, an actively biased resistor–capacitor pair is inserted in between the two stages with the overall frequency response of the OPAMP nearly unaffected. Thus, a little increase in area and power consumption is traded for pole cancellation while adaptive CM bias circuits are introduced to critical current-biased transistors with the outcome of excellent CM voltage stability across all process, voltage, temperature corners. In order to verify the practicality of the proposed OPAMP, a fully programmable analog baseband IC is designed with three key blocks, including trans-impedance amplifier, LPF (low pass filter)/HPF (high pass filter)/PGA (programmable gain amplifier) hybrid bi-quads, test buffer and power supply management units, and its − 3 dB bandwidth with voltage gain is fully programmable. What is more, two class-AB power efficient PMOS-only buffers are designed to ensure input and output test adaptability. Fabricated in a 40-nm Bulk CMOS process, the chip prototype achieves an LPF’s − 3 dB bandwidth of 28–35 MHz with 3-bit digital control and 1 MHz/step programmability, an HPF’s − 3 dB bandwidth of 3–15 MHz with 3-bit digital control, and a voltage gain of 0–63 dB with 6-bit digital control and 1 dB/step programmability. With a 20 dB voltage gain, HPF corner at 3 MHz and LPF corner at 35 MHz, the measured output P −1 dB is 12.1 dBm@20 MHz, and the output IP3 is 21.1 dBm@20 MHz. The total current consumption is around 3 mA@1.5 V and 2 mA@2.5 V.</description><subject>Adaptability</subject><subject>Amplification</subject><subject>Bandwidths</subject><subject>Bias</subject><subject>Buffers</subject><subject>Circuit design</subject><subject>Circuits and Systems</subject><subject>CMOS</subject><subject>Critical current (superconductivity)</subject><subject>Electrical Engineering</subject><subject>Engineering</subject><subject>Frequency response</subject><subject>High pass filters</subject><subject>High voltage</subject><subject>High voltages</subject><subject>Integrated circuits</subject><subject>Low pass filters</subject><subject>Mixed Signal Letter</subject><subject>Operational amplifiers</subject><subject>Power consumption</subject><subject>Prototypes</subject><subject>Signal,Image and Speech Processing</subject><subject>Topology</subject><subject>Transistors</subject><subject>Voltage gain</subject><subject>Voltage stability</subject><issn>0925-1030</issn><issn>1573-1979</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLwzAUx4MoOKdfwFPAc_SlaZvmOIvOwWQHFY8hbZM1Y21q0jH27Y2b4M3D48Hj9_vz-CN0S-GeAvCHQCHlQCBhcSjLCZyhCc04I1RwcY4mIJKMUGBwia5C2ABAwlOYoHGGB7fXnmhjbG11P-LWrls8f_zEbtBejdb1aotVN2ytsdrjvR1bbMeAVby7Na5U0JXqG7wosY2U7mLIUcO2xymQvsPl6-oNj7puexeVwzW6MGob9M3vnqKP56f38oUsV_NFOVuSmlExEt7UjYK0MEzwosloSoVIqqpOIK8gS6EwIk8pZFlVmZrWTQNUVCKluWlynvGGTdHdKXfw7munwyg3bufj20EmXAgKvBAsUsmJqr0LwWsjB2875Q-SgvxpV57albFdeWxXQpTYSQoR7tfa_0X_Y30D-RJ8XQ</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Jiang, Yu</creator><creator>Cheng, Xu</creator><creator>Han, Jing-Yu</creator><creator>Guo, Gui-Liang</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TG</scope><scope>8FD</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2203-3191</orcidid></search><sort><creationdate>20230301</creationdate><title>A power-efficient high GBW operational amplifier with its analog baseband IC implementation in 40-nm CMOS technology</title><author>Jiang, Yu ; Cheng, Xu ; Han, Jing-Yu ; Guo, Gui-Liang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-7dcda048f3978d5141992bbc206b05408f9641055bbfc1cdd019b9416fd6757d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adaptability</topic><topic>Amplification</topic><topic>Bandwidths</topic><topic>Bias</topic><topic>Buffers</topic><topic>Circuit design</topic><topic>Circuits and Systems</topic><topic>CMOS</topic><topic>Critical current (superconductivity)</topic><topic>Electrical Engineering</topic><topic>Engineering</topic><topic>Frequency response</topic><topic>High pass filters</topic><topic>High voltage</topic><topic>High voltages</topic><topic>Integrated circuits</topic><topic>Low pass filters</topic><topic>Mixed Signal Letter</topic><topic>Operational amplifiers</topic><topic>Power consumption</topic><topic>Prototypes</topic><topic>Signal,Image and Speech Processing</topic><topic>Topology</topic><topic>Transistors</topic><topic>Voltage gain</topic><topic>Voltage stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Yu</creatorcontrib><creatorcontrib>Cheng, Xu</creatorcontrib><creatorcontrib>Han, Jing-Yu</creatorcontrib><creatorcontrib>Guo, Gui-Liang</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Analog integrated circuits and signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Yu</au><au>Cheng, Xu</au><au>Han, Jing-Yu</au><au>Guo, Gui-Liang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A power-efficient high GBW operational amplifier with its analog baseband IC implementation in 40-nm CMOS technology</atitle><jtitle>Analog integrated circuits and signal processing</jtitle><stitle>Analog Integr Circ Sig Process</stitle><date>2023-03-01</date><risdate>2023</risdate><volume>114</volume><issue>3</issue><spage>475</spage><epage>482</epage><pages>475-482</pages><issn>0925-1030</issn><eissn>1573-1979</eissn><abstract>This paper presented a power-efficient, relatively high voltage gain, high GBW (gain-bandwidth-product) operational amplifier (OPAMP) with a pole cancellation technique and adaptive common-mode (CM) bias circuit. A typical two-stage topology is adopted in the OPAMP prototype design while the 1st amplifier stage is in class-A mode for high voltage gain and the 2nd buffer stage is in class-AB mode for both large drive capability and additional voltage gain. In order to improve GBW and set appropriate CM voltages, an actively biased resistor–capacitor pair is inserted in between the two stages with the overall frequency response of the OPAMP nearly unaffected. Thus, a little increase in area and power consumption is traded for pole cancellation while adaptive CM bias circuits are introduced to critical current-biased transistors with the outcome of excellent CM voltage stability across all process, voltage, temperature corners. In order to verify the practicality of the proposed OPAMP, a fully programmable analog baseband IC is designed with three key blocks, including trans-impedance amplifier, LPF (low pass filter)/HPF (high pass filter)/PGA (programmable gain amplifier) hybrid bi-quads, test buffer and power supply management units, and its − 3 dB bandwidth with voltage gain is fully programmable. What is more, two class-AB power efficient PMOS-only buffers are designed to ensure input and output test adaptability. Fabricated in a 40-nm Bulk CMOS process, the chip prototype achieves an LPF’s − 3 dB bandwidth of 28–35 MHz with 3-bit digital control and 1 MHz/step programmability, an HPF’s − 3 dB bandwidth of 3–15 MHz with 3-bit digital control, and a voltage gain of 0–63 dB with 6-bit digital control and 1 dB/step programmability. With a 20 dB voltage gain, HPF corner at 3 MHz and LPF corner at 35 MHz, the measured output P −1 dB is 12.1 dBm@20 MHz, and the output IP3 is 21.1 dBm@20 MHz. The total current consumption is around 3 mA@1.5 V and 2 mA@2.5 V.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10470-023-02136-0</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-2203-3191</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0925-1030
ispartof Analog integrated circuits and signal processing, 2023-03, Vol.114 (3), p.475-482
issn 0925-1030
1573-1979
language eng
recordid cdi_proquest_journals_2799107893
source SpringerLink Journals
subjects Adaptability
Amplification
Bandwidths
Bias
Buffers
Circuit design
Circuits and Systems
CMOS
Critical current (superconductivity)
Electrical Engineering
Engineering
Frequency response
High pass filters
High voltage
High voltages
Integrated circuits
Low pass filters
Mixed Signal Letter
Operational amplifiers
Power consumption
Prototypes
Signal,Image and Speech Processing
Topology
Transistors
Voltage gain
Voltage stability
title A power-efficient high GBW operational amplifier with its analog baseband IC implementation in 40-nm CMOS technology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T03%3A01%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20power-efficient%20high%20GBW%20operational%20amplifier%20with%20its%20analog%20baseband%20IC%20implementation%20in%2040-nm%20CMOS%20technology&rft.jtitle=Analog%20integrated%20circuits%20and%20signal%20processing&rft.au=Jiang,%20Yu&rft.date=2023-03-01&rft.volume=114&rft.issue=3&rft.spage=475&rft.epage=482&rft.pages=475-482&rft.issn=0925-1030&rft.eissn=1573-1979&rft_id=info:doi/10.1007/s10470-023-02136-0&rft_dat=%3Cproquest_cross%3E2799107893%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2799107893&rft_id=info:pmid/&rfr_iscdi=true