MoxWx–1S2 Nanotubes for Advanced Field Emission Application
Transition metal dichalcogenide (TMDC) nanotubes complement the field of low‐dimensional materials with their quasi‐1D morphology and a wide set of intriguing properties. By introducing different transition metals into the crystal structure, their properties can be tailored for specific purpose and...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2023-04, Vol.33 (15), p.n/a |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 15 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 33 |
creator | Pirker, Luka Ławrowski, Robert Schreiner, Rupert Remškar, Maja Višić, Bojana |
description | Transition metal dichalcogenide (TMDC) nanotubes complement the field of low‐dimensional materials with their quasi‐1D morphology and a wide set of intriguing properties. By introducing different transition metals into the crystal structure, their properties can be tailored for specific purpose and applications. Herein, the characterization and a subsequent preparation of single‐nanotube field emission devices of MoxWx‐1S2 nanotubes prepared via the chemical vapor transport reaction is presented. Energy‐dispersive X‐ray spectroscopy, Raman spectroscopy, and X‐ray diffraction indicate that the molybdenum and tungsten atoms are randomly distributed within the crystal structure and that the material is highly crystalline. High resolution transmission electron microscopy and electron diffraction (ED) patterns further corroborate these findings. A detailed analysis of the ED patterns from an eight‐layer nanotube reveal that the nanotubes grow in the 2H structure, with each shell consists of one bilayer. The work function of the nanotubes is comparable to that of pure MoS2 and lower of pure WS2 NTs, making them ideal candidates for field emission applications. Two devices with different geometrical setup are prepared and tested as field emitters, showing promising results for single nanotube field emission applications.
Highly crystalline alloyed Mo0.56W0.44S2 nanotubes are synthesized via the chemical vapor transport method, with the Mo and W atoms are homogenously distributed in the crystal lattice. Two single‐nanotube field emission devices, with different geometrical setups, show promising results at moderate voltages comparable with other transition metal dichalcogenide devices. |
doi_str_mv | 10.1002/adfm.202213869 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2798915029</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2798915029</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2739-6ac88fa59a543a63b7a8b9aa9aed0c544eed31b7f65635c70a0013923d208323</originalsourceid><addsrcrecordid>eNo9kM1Kw0AUhQdRsFa3rgOuU2fmJvOzcBFqq0KrCwu6G24yE0jJn5lU253v4Bv6JKZUurrnwuGcw0fINaMTRim_RZtXE045Z6CEPiEjJpgIgXJ1etTs_ZxceL-mlEkJ0YjcLZvt2_b3-4e98uAZ66bfpM4HedMFif3EOnM2mBeutMGsKrwvmjpI2rYsMuwHfUnOciy9u_q_Y7Kaz1bTx3Dx8vA0TRZhyyXoUGCmVI6xxjgCFJBKVKlG1OgszeIocs4CS2UuYgFxJikO-0BzsJwq4DAmN4fYtms-Ns73Zt1sunpoNFxqpVlMuR5c-uD6Kkq3M21XVNjtDKNmj8fs8ZgjHpPcz5fHD_4Adzha0g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2798915029</pqid></control><display><type>article</type><title>MoxWx–1S2 Nanotubes for Advanced Field Emission Application</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Pirker, Luka ; Ławrowski, Robert ; Schreiner, Rupert ; Remškar, Maja ; Višić, Bojana</creator><creatorcontrib>Pirker, Luka ; Ławrowski, Robert ; Schreiner, Rupert ; Remškar, Maja ; Višić, Bojana</creatorcontrib><description>Transition metal dichalcogenide (TMDC) nanotubes complement the field of low‐dimensional materials with their quasi‐1D morphology and a wide set of intriguing properties. By introducing different transition metals into the crystal structure, their properties can be tailored for specific purpose and applications. Herein, the characterization and a subsequent preparation of single‐nanotube field emission devices of MoxWx‐1S2 nanotubes prepared via the chemical vapor transport reaction is presented. Energy‐dispersive X‐ray spectroscopy, Raman spectroscopy, and X‐ray diffraction indicate that the molybdenum and tungsten atoms are randomly distributed within the crystal structure and that the material is highly crystalline. High resolution transmission electron microscopy and electron diffraction (ED) patterns further corroborate these findings. A detailed analysis of the ED patterns from an eight‐layer nanotube reveal that the nanotubes grow in the 2H structure, with each shell consists of one bilayer. The work function of the nanotubes is comparable to that of pure MoS2 and lower of pure WS2 NTs, making them ideal candidates for field emission applications. Two devices with different geometrical setup are prepared and tested as field emitters, showing promising results for single nanotube field emission applications.
Highly crystalline alloyed Mo0.56W0.44S2 nanotubes are synthesized via the chemical vapor transport method, with the Mo and W atoms are homogenously distributed in the crystal lattice. Two single‐nanotube field emission devices, with different geometrical setups, show promising results at moderate voltages comparable with other transition metal dichalcogenide devices.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202213869</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Bilayers ; Crystal structure ; Diffraction patterns ; Electron diffraction ; Electrons ; Emission analysis ; Emitters ; Field emission ; High resolution electron microscopy ; Materials science ; Nanotubes ; Raman spectroscopy ; single nanotube devices ; Spectrum analysis ; ternary van der Waals structures ; Transition metal compounds ; transition metal dichalcogenides ; Work functions</subject><ispartof>Advanced functional materials, 2023-04, Vol.33 (15), p.n/a</ispartof><rights>2023 The Authors. Advanced Functional Materials published by Wiley‐VCH GmbH</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-0741-0048 ; 0000-0002-8919-1768 ; 0000-0001-6546-5405 ; 0000-0002-2065-0727</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202213869$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202213869$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Pirker, Luka</creatorcontrib><creatorcontrib>Ławrowski, Robert</creatorcontrib><creatorcontrib>Schreiner, Rupert</creatorcontrib><creatorcontrib>Remškar, Maja</creatorcontrib><creatorcontrib>Višić, Bojana</creatorcontrib><title>MoxWx–1S2 Nanotubes for Advanced Field Emission Application</title><title>Advanced functional materials</title><description>Transition metal dichalcogenide (TMDC) nanotubes complement the field of low‐dimensional materials with their quasi‐1D morphology and a wide set of intriguing properties. By introducing different transition metals into the crystal structure, their properties can be tailored for specific purpose and applications. Herein, the characterization and a subsequent preparation of single‐nanotube field emission devices of MoxWx‐1S2 nanotubes prepared via the chemical vapor transport reaction is presented. Energy‐dispersive X‐ray spectroscopy, Raman spectroscopy, and X‐ray diffraction indicate that the molybdenum and tungsten atoms are randomly distributed within the crystal structure and that the material is highly crystalline. High resolution transmission electron microscopy and electron diffraction (ED) patterns further corroborate these findings. A detailed analysis of the ED patterns from an eight‐layer nanotube reveal that the nanotubes grow in the 2H structure, with each shell consists of one bilayer. The work function of the nanotubes is comparable to that of pure MoS2 and lower of pure WS2 NTs, making them ideal candidates for field emission applications. Two devices with different geometrical setup are prepared and tested as field emitters, showing promising results for single nanotube field emission applications.
Highly crystalline alloyed Mo0.56W0.44S2 nanotubes are synthesized via the chemical vapor transport method, with the Mo and W atoms are homogenously distributed in the crystal lattice. Two single‐nanotube field emission devices, with different geometrical setups, show promising results at moderate voltages comparable with other transition metal dichalcogenide devices.</description><subject>Bilayers</subject><subject>Crystal structure</subject><subject>Diffraction patterns</subject><subject>Electron diffraction</subject><subject>Electrons</subject><subject>Emission analysis</subject><subject>Emitters</subject><subject>Field emission</subject><subject>High resolution electron microscopy</subject><subject>Materials science</subject><subject>Nanotubes</subject><subject>Raman spectroscopy</subject><subject>single nanotube devices</subject><subject>Spectrum analysis</subject><subject>ternary van der Waals structures</subject><subject>Transition metal compounds</subject><subject>transition metal dichalcogenides</subject><subject>Work functions</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNo9kM1Kw0AUhQdRsFa3rgOuU2fmJvOzcBFqq0KrCwu6G24yE0jJn5lU253v4Bv6JKZUurrnwuGcw0fINaMTRim_RZtXE045Z6CEPiEjJpgIgXJ1etTs_ZxceL-mlEkJ0YjcLZvt2_b3-4e98uAZ66bfpM4HedMFif3EOnM2mBeutMGsKrwvmjpI2rYsMuwHfUnOciy9u_q_Y7Kaz1bTx3Dx8vA0TRZhyyXoUGCmVI6xxjgCFJBKVKlG1OgszeIocs4CS2UuYgFxJikO-0BzsJwq4DAmN4fYtms-Ns73Zt1sunpoNFxqpVlMuR5c-uD6Kkq3M21XVNjtDKNmj8fs8ZgjHpPcz5fHD_4Adzha0g</recordid><startdate>20230411</startdate><enddate>20230411</enddate><creator>Pirker, Luka</creator><creator>Ławrowski, Robert</creator><creator>Schreiner, Rupert</creator><creator>Remškar, Maja</creator><creator>Višić, Bojana</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0741-0048</orcidid><orcidid>https://orcid.org/0000-0002-8919-1768</orcidid><orcidid>https://orcid.org/0000-0001-6546-5405</orcidid><orcidid>https://orcid.org/0000-0002-2065-0727</orcidid></search><sort><creationdate>20230411</creationdate><title>MoxWx–1S2 Nanotubes for Advanced Field Emission Application</title><author>Pirker, Luka ; Ławrowski, Robert ; Schreiner, Rupert ; Remškar, Maja ; Višić, Bojana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2739-6ac88fa59a543a63b7a8b9aa9aed0c544eed31b7f65635c70a0013923d208323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bilayers</topic><topic>Crystal structure</topic><topic>Diffraction patterns</topic><topic>Electron diffraction</topic><topic>Electrons</topic><topic>Emission analysis</topic><topic>Emitters</topic><topic>Field emission</topic><topic>High resolution electron microscopy</topic><topic>Materials science</topic><topic>Nanotubes</topic><topic>Raman spectroscopy</topic><topic>single nanotube devices</topic><topic>Spectrum analysis</topic><topic>ternary van der Waals structures</topic><topic>Transition metal compounds</topic><topic>transition metal dichalcogenides</topic><topic>Work functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pirker, Luka</creatorcontrib><creatorcontrib>Ławrowski, Robert</creatorcontrib><creatorcontrib>Schreiner, Rupert</creatorcontrib><creatorcontrib>Remškar, Maja</creatorcontrib><creatorcontrib>Višić, Bojana</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pirker, Luka</au><au>Ławrowski, Robert</au><au>Schreiner, Rupert</au><au>Remškar, Maja</au><au>Višić, Bojana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MoxWx–1S2 Nanotubes for Advanced Field Emission Application</atitle><jtitle>Advanced functional materials</jtitle><date>2023-04-11</date><risdate>2023</risdate><volume>33</volume><issue>15</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Transition metal dichalcogenide (TMDC) nanotubes complement the field of low‐dimensional materials with their quasi‐1D morphology and a wide set of intriguing properties. By introducing different transition metals into the crystal structure, their properties can be tailored for specific purpose and applications. Herein, the characterization and a subsequent preparation of single‐nanotube field emission devices of MoxWx‐1S2 nanotubes prepared via the chemical vapor transport reaction is presented. Energy‐dispersive X‐ray spectroscopy, Raman spectroscopy, and X‐ray diffraction indicate that the molybdenum and tungsten atoms are randomly distributed within the crystal structure and that the material is highly crystalline. High resolution transmission electron microscopy and electron diffraction (ED) patterns further corroborate these findings. A detailed analysis of the ED patterns from an eight‐layer nanotube reveal that the nanotubes grow in the 2H structure, with each shell consists of one bilayer. The work function of the nanotubes is comparable to that of pure MoS2 and lower of pure WS2 NTs, making them ideal candidates for field emission applications. Two devices with different geometrical setup are prepared and tested as field emitters, showing promising results for single nanotube field emission applications.
Highly crystalline alloyed Mo0.56W0.44S2 nanotubes are synthesized via the chemical vapor transport method, with the Mo and W atoms are homogenously distributed in the crystal lattice. Two single‐nanotube field emission devices, with different geometrical setups, show promising results at moderate voltages comparable with other transition metal dichalcogenide devices.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202213869</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-0741-0048</orcidid><orcidid>https://orcid.org/0000-0002-8919-1768</orcidid><orcidid>https://orcid.org/0000-0001-6546-5405</orcidid><orcidid>https://orcid.org/0000-0002-2065-0727</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2023-04, Vol.33 (15), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_2798915029 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Bilayers Crystal structure Diffraction patterns Electron diffraction Electrons Emission analysis Emitters Field emission High resolution electron microscopy Materials science Nanotubes Raman spectroscopy single nanotube devices Spectrum analysis ternary van der Waals structures Transition metal compounds transition metal dichalcogenides Work functions |
title | MoxWx–1S2 Nanotubes for Advanced Field Emission Application |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T01%3A55%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MoxWx%E2%80%931S2%20Nanotubes%20for%20Advanced%20Field%20Emission%20Application&rft.jtitle=Advanced%20functional%20materials&rft.au=Pirker,%20Luka&rft.date=2023-04-11&rft.volume=33&rft.issue=15&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202213869&rft_dat=%3Cproquest_wiley%3E2798915029%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2798915029&rft_id=info:pmid/&rfr_iscdi=true |