MoxWx–1S2 Nanotubes for Advanced Field Emission Application

Transition metal dichalcogenide (TMDC) nanotubes complement the field of low‐dimensional materials with their quasi‐1D morphology and a wide set of intriguing properties. By introducing different transition metals into the crystal structure, their properties can be tailored for specific purpose and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2023-04, Vol.33 (15), p.n/a
Hauptverfasser: Pirker, Luka, Ławrowski, Robert, Schreiner, Rupert, Remškar, Maja, Višić, Bojana
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 15
container_start_page
container_title Advanced functional materials
container_volume 33
creator Pirker, Luka
Ławrowski, Robert
Schreiner, Rupert
Remškar, Maja
Višić, Bojana
description Transition metal dichalcogenide (TMDC) nanotubes complement the field of low‐dimensional materials with their quasi‐1D morphology and a wide set of intriguing properties. By introducing different transition metals into the crystal structure, their properties can be tailored for specific purpose and applications. Herein, the characterization and a subsequent preparation of single‐nanotube field emission devices of MoxWx‐1S2 nanotubes prepared via the chemical vapor transport reaction is presented. Energy‐dispersive X‐ray spectroscopy, Raman spectroscopy, and X‐ray diffraction  indicate that the molybdenum and tungsten atoms are randomly distributed within the crystal structure and that the material is highly crystalline. High resolution transmission electron microscopy  and electron diffraction (ED) patterns further corroborate these findings. A detailed analysis of the ED patterns from an eight‐layer nanotube reveal that the nanotubes grow in the 2H structure, with each shell consists of one bilayer. The work function of the nanotubes is comparable to that of pure MoS2 and lower of pure WS2 NTs, making them ideal candidates for field emission applications. Two devices with different geometrical setup are prepared and tested as field emitters, showing promising results for single nanotube field emission applications. Highly crystalline alloyed Mo0.56W0.44S2 nanotubes are synthesized via the chemical vapor transport method, with the Mo and W atoms are homogenously distributed in the crystal lattice. Two single‐nanotube field emission devices, with different geometrical setups, show promising results at moderate voltages comparable with other transition metal dichalcogenide devices.
doi_str_mv 10.1002/adfm.202213869
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2798915029</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2798915029</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2739-6ac88fa59a543a63b7a8b9aa9aed0c544eed31b7f65635c70a0013923d208323</originalsourceid><addsrcrecordid>eNo9kM1Kw0AUhQdRsFa3rgOuU2fmJvOzcBFqq0KrCwu6G24yE0jJn5lU253v4Bv6JKZUurrnwuGcw0fINaMTRim_RZtXE045Z6CEPiEjJpgIgXJ1etTs_ZxceL-mlEkJ0YjcLZvt2_b3-4e98uAZ66bfpM4HedMFif3EOnM2mBeutMGsKrwvmjpI2rYsMuwHfUnOciy9u_q_Y7Kaz1bTx3Dx8vA0TRZhyyXoUGCmVI6xxjgCFJBKVKlG1OgszeIocs4CS2UuYgFxJikO-0BzsJwq4DAmN4fYtms-Ns73Zt1sunpoNFxqpVlMuR5c-uD6Kkq3M21XVNjtDKNmj8fs8ZgjHpPcz5fHD_4Adzha0g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2798915029</pqid></control><display><type>article</type><title>MoxWx–1S2 Nanotubes for Advanced Field Emission Application</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Pirker, Luka ; Ławrowski, Robert ; Schreiner, Rupert ; Remškar, Maja ; Višić, Bojana</creator><creatorcontrib>Pirker, Luka ; Ławrowski, Robert ; Schreiner, Rupert ; Remškar, Maja ; Višić, Bojana</creatorcontrib><description>Transition metal dichalcogenide (TMDC) nanotubes complement the field of low‐dimensional materials with their quasi‐1D morphology and a wide set of intriguing properties. By introducing different transition metals into the crystal structure, their properties can be tailored for specific purpose and applications. Herein, the characterization and a subsequent preparation of single‐nanotube field emission devices of MoxWx‐1S2 nanotubes prepared via the chemical vapor transport reaction is presented. Energy‐dispersive X‐ray spectroscopy, Raman spectroscopy, and X‐ray diffraction  indicate that the molybdenum and tungsten atoms are randomly distributed within the crystal structure and that the material is highly crystalline. High resolution transmission electron microscopy  and electron diffraction (ED) patterns further corroborate these findings. A detailed analysis of the ED patterns from an eight‐layer nanotube reveal that the nanotubes grow in the 2H structure, with each shell consists of one bilayer. The work function of the nanotubes is comparable to that of pure MoS2 and lower of pure WS2 NTs, making them ideal candidates for field emission applications. Two devices with different geometrical setup are prepared and tested as field emitters, showing promising results for single nanotube field emission applications. Highly crystalline alloyed Mo0.56W0.44S2 nanotubes are synthesized via the chemical vapor transport method, with the Mo and W atoms are homogenously distributed in the crystal lattice. Two single‐nanotube field emission devices, with different geometrical setups, show promising results at moderate voltages comparable with other transition metal dichalcogenide devices.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202213869</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Bilayers ; Crystal structure ; Diffraction patterns ; Electron diffraction ; Electrons ; Emission analysis ; Emitters ; Field emission ; High resolution electron microscopy ; Materials science ; Nanotubes ; Raman spectroscopy ; single nanotube devices ; Spectrum analysis ; ternary van der Waals structures ; Transition metal compounds ; transition metal dichalcogenides ; Work functions</subject><ispartof>Advanced functional materials, 2023-04, Vol.33 (15), p.n/a</ispartof><rights>2023 The Authors. Advanced Functional Materials published by Wiley‐VCH GmbH</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-0741-0048 ; 0000-0002-8919-1768 ; 0000-0001-6546-5405 ; 0000-0002-2065-0727</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202213869$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202213869$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Pirker, Luka</creatorcontrib><creatorcontrib>Ławrowski, Robert</creatorcontrib><creatorcontrib>Schreiner, Rupert</creatorcontrib><creatorcontrib>Remškar, Maja</creatorcontrib><creatorcontrib>Višić, Bojana</creatorcontrib><title>MoxWx–1S2 Nanotubes for Advanced Field Emission Application</title><title>Advanced functional materials</title><description>Transition metal dichalcogenide (TMDC) nanotubes complement the field of low‐dimensional materials with their quasi‐1D morphology and a wide set of intriguing properties. By introducing different transition metals into the crystal structure, their properties can be tailored for specific purpose and applications. Herein, the characterization and a subsequent preparation of single‐nanotube field emission devices of MoxWx‐1S2 nanotubes prepared via the chemical vapor transport reaction is presented. Energy‐dispersive X‐ray spectroscopy, Raman spectroscopy, and X‐ray diffraction  indicate that the molybdenum and tungsten atoms are randomly distributed within the crystal structure and that the material is highly crystalline. High resolution transmission electron microscopy  and electron diffraction (ED) patterns further corroborate these findings. A detailed analysis of the ED patterns from an eight‐layer nanotube reveal that the nanotubes grow in the 2H structure, with each shell consists of one bilayer. The work function of the nanotubes is comparable to that of pure MoS2 and lower of pure WS2 NTs, making them ideal candidates for field emission applications. Two devices with different geometrical setup are prepared and tested as field emitters, showing promising results for single nanotube field emission applications. Highly crystalline alloyed Mo0.56W0.44S2 nanotubes are synthesized via the chemical vapor transport method, with the Mo and W atoms are homogenously distributed in the crystal lattice. Two single‐nanotube field emission devices, with different geometrical setups, show promising results at moderate voltages comparable with other transition metal dichalcogenide devices.</description><subject>Bilayers</subject><subject>Crystal structure</subject><subject>Diffraction patterns</subject><subject>Electron diffraction</subject><subject>Electrons</subject><subject>Emission analysis</subject><subject>Emitters</subject><subject>Field emission</subject><subject>High resolution electron microscopy</subject><subject>Materials science</subject><subject>Nanotubes</subject><subject>Raman spectroscopy</subject><subject>single nanotube devices</subject><subject>Spectrum analysis</subject><subject>ternary van der Waals structures</subject><subject>Transition metal compounds</subject><subject>transition metal dichalcogenides</subject><subject>Work functions</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNo9kM1Kw0AUhQdRsFa3rgOuU2fmJvOzcBFqq0KrCwu6G24yE0jJn5lU253v4Bv6JKZUurrnwuGcw0fINaMTRim_RZtXE045Z6CEPiEjJpgIgXJ1etTs_ZxceL-mlEkJ0YjcLZvt2_b3-4e98uAZ66bfpM4HedMFif3EOnM2mBeutMGsKrwvmjpI2rYsMuwHfUnOciy9u_q_Y7Kaz1bTx3Dx8vA0TRZhyyXoUGCmVI6xxjgCFJBKVKlG1OgszeIocs4CS2UuYgFxJikO-0BzsJwq4DAmN4fYtms-Ns73Zt1sunpoNFxqpVlMuR5c-uD6Kkq3M21XVNjtDKNmj8fs8ZgjHpPcz5fHD_4Adzha0g</recordid><startdate>20230411</startdate><enddate>20230411</enddate><creator>Pirker, Luka</creator><creator>Ławrowski, Robert</creator><creator>Schreiner, Rupert</creator><creator>Remškar, Maja</creator><creator>Višić, Bojana</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0741-0048</orcidid><orcidid>https://orcid.org/0000-0002-8919-1768</orcidid><orcidid>https://orcid.org/0000-0001-6546-5405</orcidid><orcidid>https://orcid.org/0000-0002-2065-0727</orcidid></search><sort><creationdate>20230411</creationdate><title>MoxWx–1S2 Nanotubes for Advanced Field Emission Application</title><author>Pirker, Luka ; Ławrowski, Robert ; Schreiner, Rupert ; Remškar, Maja ; Višić, Bojana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2739-6ac88fa59a543a63b7a8b9aa9aed0c544eed31b7f65635c70a0013923d208323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bilayers</topic><topic>Crystal structure</topic><topic>Diffraction patterns</topic><topic>Electron diffraction</topic><topic>Electrons</topic><topic>Emission analysis</topic><topic>Emitters</topic><topic>Field emission</topic><topic>High resolution electron microscopy</topic><topic>Materials science</topic><topic>Nanotubes</topic><topic>Raman spectroscopy</topic><topic>single nanotube devices</topic><topic>Spectrum analysis</topic><topic>ternary van der Waals structures</topic><topic>Transition metal compounds</topic><topic>transition metal dichalcogenides</topic><topic>Work functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pirker, Luka</creatorcontrib><creatorcontrib>Ławrowski, Robert</creatorcontrib><creatorcontrib>Schreiner, Rupert</creatorcontrib><creatorcontrib>Remškar, Maja</creatorcontrib><creatorcontrib>Višić, Bojana</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pirker, Luka</au><au>Ławrowski, Robert</au><au>Schreiner, Rupert</au><au>Remškar, Maja</au><au>Višić, Bojana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MoxWx–1S2 Nanotubes for Advanced Field Emission Application</atitle><jtitle>Advanced functional materials</jtitle><date>2023-04-11</date><risdate>2023</risdate><volume>33</volume><issue>15</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Transition metal dichalcogenide (TMDC) nanotubes complement the field of low‐dimensional materials with their quasi‐1D morphology and a wide set of intriguing properties. By introducing different transition metals into the crystal structure, their properties can be tailored for specific purpose and applications. Herein, the characterization and a subsequent preparation of single‐nanotube field emission devices of MoxWx‐1S2 nanotubes prepared via the chemical vapor transport reaction is presented. Energy‐dispersive X‐ray spectroscopy, Raman spectroscopy, and X‐ray diffraction  indicate that the molybdenum and tungsten atoms are randomly distributed within the crystal structure and that the material is highly crystalline. High resolution transmission electron microscopy  and electron diffraction (ED) patterns further corroborate these findings. A detailed analysis of the ED patterns from an eight‐layer nanotube reveal that the nanotubes grow in the 2H structure, with each shell consists of one bilayer. The work function of the nanotubes is comparable to that of pure MoS2 and lower of pure WS2 NTs, making them ideal candidates for field emission applications. Two devices with different geometrical setup are prepared and tested as field emitters, showing promising results for single nanotube field emission applications. Highly crystalline alloyed Mo0.56W0.44S2 nanotubes are synthesized via the chemical vapor transport method, with the Mo and W atoms are homogenously distributed in the crystal lattice. Two single‐nanotube field emission devices, with different geometrical setups, show promising results at moderate voltages comparable with other transition metal dichalcogenide devices.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202213869</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-0741-0048</orcidid><orcidid>https://orcid.org/0000-0002-8919-1768</orcidid><orcidid>https://orcid.org/0000-0001-6546-5405</orcidid><orcidid>https://orcid.org/0000-0002-2065-0727</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2023-04, Vol.33 (15), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2798915029
source Wiley Online Library Journals Frontfile Complete
subjects Bilayers
Crystal structure
Diffraction patterns
Electron diffraction
Electrons
Emission analysis
Emitters
Field emission
High resolution electron microscopy
Materials science
Nanotubes
Raman spectroscopy
single nanotube devices
Spectrum analysis
ternary van der Waals structures
Transition metal compounds
transition metal dichalcogenides
Work functions
title MoxWx–1S2 Nanotubes for Advanced Field Emission Application
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T01%3A55%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MoxWx%E2%80%931S2%20Nanotubes%20for%20Advanced%20Field%20Emission%20Application&rft.jtitle=Advanced%20functional%20materials&rft.au=Pirker,%20Luka&rft.date=2023-04-11&rft.volume=33&rft.issue=15&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202213869&rft_dat=%3Cproquest_wiley%3E2798915029%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2798915029&rft_id=info:pmid/&rfr_iscdi=true