Modeling of physical fields by means of the Cosserat continuum

We consider a special type Cosserat continuum and suggest analogies between quantities characterizing the stress–strain state of the continuum and quantities characterizing physical processes. Such an approach provides us with the ability to derive equations describing electricity, magnetism, and ot...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Zeitschrift für angewandte Mathematik und Mechanik 2023-04, Vol.103 (4), p.n/a
1. Verfasser: Ivanova, Elena A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 4
container_start_page
container_title Zeitschrift für angewandte Mathematik und Mechanik
container_volume 103
creator Ivanova, Elena A.
description We consider a special type Cosserat continuum and suggest analogies between quantities characterizing the stress–strain state of the continuum and quantities characterizing physical processes. Such an approach provides us with the ability to derive equations describing electricity, magnetism, and other physical phenomena. This study continues the line of our earlier research. In the present paper, we obtain equations that can be treated as a generalization of Maxwell's equations. The main difference between the proposed equations and classical Maxwell's equations is in the description of magnetic phenomena. In particular, we introduce the concept of a magnetic charge vector and show that this quantity, like the electric charge, satisfies the conservation law and the Gauss law. We are convinced that the magnetic charge vector is the most appropriate physical quantity to characterize the state of a magnetized body. In addition to modeling the electromagnetic field, we make assumptions about how the proposed model can describe the field corresponding to the strong interaction. We consider a special type Cosserat continuum and suggest analogies between quantities characterizing the stress–strain state of the continuum and quantities characterizing physical processes. Such an approach provides us with the ability to derive equations describing electricity, magnetism, and other physical phenomena. This study continues the line of our earlier research. In the present paper, we obtain equations that can be treated as a generalization of Maxwell's equations. The main difference between the proposed equations and classical Maxwell's equations is in the description of magnetic phenomena.…
doi_str_mv 10.1002/zamm.202100333
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2798798122</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2798798122</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3173-935456fcc1bce9f16b0a0250f004560837b5bd87bfae653a4a22d259be9d66013</originalsourceid><addsrcrecordid>eNqFUE1LAzEQDaJgrV49BzxvnSSbbHMRStEqtHjRi5eQZBO7ZT9qsousv96Uih6FgWFm3nvzeAhdE5gRAHr7pZtmRoGmgTF2giaEU5LlAOQUTQDyPKNUFOfoIsYdpK0kbILuNl3p6qp9x53H--0YK6tr7CtXlxGbETdOt_Fw67cOL7sYXdA9tl3bV-0wNJfozOs6uqufPkWvD_cvy8ds_bx6Wi7WmWWkYJlkPOfCW0uMddITYUAD5eCTLS5gzgrDTTkvjNdOcKZzTWlJuTROlkIAYVN0c9Tdh-5jcLFXu24IbXqpaCHnqQilCTU7omxIToPzah-qRodREVCHjNQhI_WbUSLII-Gzqt34D1q9LTabP-43qV5pyA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2798798122</pqid></control><display><type>article</type><title>Modeling of physical fields by means of the Cosserat continuum</title><source>Wiley Online Library All Journals</source><creator>Ivanova, Elena A.</creator><creatorcontrib>Ivanova, Elena A.</creatorcontrib><description>We consider a special type Cosserat continuum and suggest analogies between quantities characterizing the stress–strain state of the continuum and quantities characterizing physical processes. Such an approach provides us with the ability to derive equations describing electricity, magnetism, and other physical phenomena. This study continues the line of our earlier research. In the present paper, we obtain equations that can be treated as a generalization of Maxwell's equations. The main difference between the proposed equations and classical Maxwell's equations is in the description of magnetic phenomena. In particular, we introduce the concept of a magnetic charge vector and show that this quantity, like the electric charge, satisfies the conservation law and the Gauss law. We are convinced that the magnetic charge vector is the most appropriate physical quantity to characterize the state of a magnetized body. In addition to modeling the electromagnetic field, we make assumptions about how the proposed model can describe the field corresponding to the strong interaction. We consider a special type Cosserat continuum and suggest analogies between quantities characterizing the stress–strain state of the continuum and quantities characterizing physical processes. Such an approach provides us with the ability to derive equations describing electricity, magnetism, and other physical phenomena. This study continues the line of our earlier research. In the present paper, we obtain equations that can be treated as a generalization of Maxwell's equations. The main difference between the proposed equations and classical Maxwell's equations is in the description of magnetic phenomena.…</description><identifier>ISSN: 0044-2267</identifier><identifier>EISSN: 1521-4001</identifier><identifier>DOI: 10.1002/zamm.202100333</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Conservation laws ; Electromagnetic fields ; Mathematical models ; Maxwell's equations ; Modelling ; Strong interactions (field theory)</subject><ispartof>Zeitschrift für angewandte Mathematik und Mechanik, 2023-04, Vol.103 (4), p.n/a</ispartof><rights>2022 Wiley‐VCH GmbH.</rights><rights>2023 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3173-935456fcc1bce9f16b0a0250f004560837b5bd87bfae653a4a22d259be9d66013</citedby><cites>FETCH-LOGICAL-c3173-935456fcc1bce9f16b0a0250f004560837b5bd87bfae653a4a22d259be9d66013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fzamm.202100333$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fzamm.202100333$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Ivanova, Elena A.</creatorcontrib><title>Modeling of physical fields by means of the Cosserat continuum</title><title>Zeitschrift für angewandte Mathematik und Mechanik</title><description>We consider a special type Cosserat continuum and suggest analogies between quantities characterizing the stress–strain state of the continuum and quantities characterizing physical processes. Such an approach provides us with the ability to derive equations describing electricity, magnetism, and other physical phenomena. This study continues the line of our earlier research. In the present paper, we obtain equations that can be treated as a generalization of Maxwell's equations. The main difference between the proposed equations and classical Maxwell's equations is in the description of magnetic phenomena. In particular, we introduce the concept of a magnetic charge vector and show that this quantity, like the electric charge, satisfies the conservation law and the Gauss law. We are convinced that the magnetic charge vector is the most appropriate physical quantity to characterize the state of a magnetized body. In addition to modeling the electromagnetic field, we make assumptions about how the proposed model can describe the field corresponding to the strong interaction. We consider a special type Cosserat continuum and suggest analogies between quantities characterizing the stress–strain state of the continuum and quantities characterizing physical processes. Such an approach provides us with the ability to derive equations describing electricity, magnetism, and other physical phenomena. This study continues the line of our earlier research. In the present paper, we obtain equations that can be treated as a generalization of Maxwell's equations. The main difference between the proposed equations and classical Maxwell's equations is in the description of magnetic phenomena.…</description><subject>Conservation laws</subject><subject>Electromagnetic fields</subject><subject>Mathematical models</subject><subject>Maxwell's equations</subject><subject>Modelling</subject><subject>Strong interactions (field theory)</subject><issn>0044-2267</issn><issn>1521-4001</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFUE1LAzEQDaJgrV49BzxvnSSbbHMRStEqtHjRi5eQZBO7ZT9qsousv96Uih6FgWFm3nvzeAhdE5gRAHr7pZtmRoGmgTF2giaEU5LlAOQUTQDyPKNUFOfoIsYdpK0kbILuNl3p6qp9x53H--0YK6tr7CtXlxGbETdOt_Fw67cOL7sYXdA9tl3bV-0wNJfozOs6uqufPkWvD_cvy8ds_bx6Wi7WmWWkYJlkPOfCW0uMddITYUAD5eCTLS5gzgrDTTkvjNdOcKZzTWlJuTROlkIAYVN0c9Tdh-5jcLFXu24IbXqpaCHnqQilCTU7omxIToPzah-qRodREVCHjNQhI_WbUSLII-Gzqt34D1q9LTabP-43qV5pyA</recordid><startdate>202304</startdate><enddate>202304</enddate><creator>Ivanova, Elena A.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>202304</creationdate><title>Modeling of physical fields by means of the Cosserat continuum</title><author>Ivanova, Elena A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3173-935456fcc1bce9f16b0a0250f004560837b5bd87bfae653a4a22d259be9d66013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Conservation laws</topic><topic>Electromagnetic fields</topic><topic>Mathematical models</topic><topic>Maxwell's equations</topic><topic>Modelling</topic><topic>Strong interactions (field theory)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ivanova, Elena A.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Zeitschrift für angewandte Mathematik und Mechanik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ivanova, Elena A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling of physical fields by means of the Cosserat continuum</atitle><jtitle>Zeitschrift für angewandte Mathematik und Mechanik</jtitle><date>2023-04</date><risdate>2023</risdate><volume>103</volume><issue>4</issue><epage>n/a</epage><issn>0044-2267</issn><eissn>1521-4001</eissn><abstract>We consider a special type Cosserat continuum and suggest analogies between quantities characterizing the stress–strain state of the continuum and quantities characterizing physical processes. Such an approach provides us with the ability to derive equations describing electricity, magnetism, and other physical phenomena. This study continues the line of our earlier research. In the present paper, we obtain equations that can be treated as a generalization of Maxwell's equations. The main difference between the proposed equations and classical Maxwell's equations is in the description of magnetic phenomena. In particular, we introduce the concept of a magnetic charge vector and show that this quantity, like the electric charge, satisfies the conservation law and the Gauss law. We are convinced that the magnetic charge vector is the most appropriate physical quantity to characterize the state of a magnetized body. In addition to modeling the electromagnetic field, we make assumptions about how the proposed model can describe the field corresponding to the strong interaction. We consider a special type Cosserat continuum and suggest analogies between quantities characterizing the stress–strain state of the continuum and quantities characterizing physical processes. Such an approach provides us with the ability to derive equations describing electricity, magnetism, and other physical phenomena. This study continues the line of our earlier research. In the present paper, we obtain equations that can be treated as a generalization of Maxwell's equations. The main difference between the proposed equations and classical Maxwell's equations is in the description of magnetic phenomena.…</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/zamm.202100333</doi><tpages>23</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0044-2267
ispartof Zeitschrift für angewandte Mathematik und Mechanik, 2023-04, Vol.103 (4), p.n/a
issn 0044-2267
1521-4001
language eng
recordid cdi_proquest_journals_2798798122
source Wiley Online Library All Journals
subjects Conservation laws
Electromagnetic fields
Mathematical models
Maxwell's equations
Modelling
Strong interactions (field theory)
title Modeling of physical fields by means of the Cosserat continuum
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T10%3A47%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20of%20physical%20fields%20by%20means%20of%20the%20Cosserat%20continuum&rft.jtitle=Zeitschrift%20f%C3%BCr%20angewandte%20Mathematik%20und%20Mechanik&rft.au=Ivanova,%20Elena%20A.&rft.date=2023-04&rft.volume=103&rft.issue=4&rft.epage=n/a&rft.issn=0044-2267&rft.eissn=1521-4001&rft_id=info:doi/10.1002/zamm.202100333&rft_dat=%3Cproquest_cross%3E2798798122%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2798798122&rft_id=info:pmid/&rfr_iscdi=true