First-principles approach to the structural, electronic and intercalation voltage of Prussian blue (KxFe[Fe(CN)6]) (x = 1, 2) as potential cathode material for potassium ion batteries

Prussian blue (PB) is a good candidate as cathode material in potassium ion batteries (KIB) due to its high electrochemical performance. Thus, to verify the performance, the structural and electronic properties of PB were performed using first-principles studies based on the density functional theor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of solid state electrochemistry 2023-05, Vol.27 (5), p.1095-1106
Hauptverfasser: Sazman, F. N., Zaki, N. H. M., Badrudin, F. W., Samat, M. H., Malik, N. A., Nor, N. A. N. M., Hassan, O. H., Yahya, M. Z. A., Taib, M. F. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1106
container_issue 5
container_start_page 1095
container_title Journal of solid state electrochemistry
container_volume 27
creator Sazman, F. N.
Zaki, N. H. M.
Badrudin, F. W.
Samat, M. H.
Malik, N. A.
Nor, N. A. N. M.
Hassan, O. H.
Yahya, M. Z. A.
Taib, M. F. M.
description Prussian blue (PB) is a good candidate as cathode material in potassium ion batteries (KIB) due to its high electrochemical performance. Thus, to verify the performance, the structural and electronic properties of PB were performed using first-principles studies based on the density functional theory (DFT) method. The properties of PB, KPB and K 2 PB were calculated using the Cambridge Serial Total Energy Package (CASTEP) computer code. From the geometrical optimization of pure PB, the generalized gradient approximation for Perdew-Burke-Ernzerhof (GGA-PBE) functional shows the most comparable structural properties compared to local density approximation by Ceperley and Adler as parameterized by Perdew and Zunger (LDA-CAPZ) and the generalized gradient approximation for Perdew-Burke-Ernzerhof for solids (GGA-PBEsol) functional. In addition, the electronic properties of the pure PB band gap is 0.72 eV which is slightly underestimated from the experimental value. Thus, the Hubbard U was used to broaden the bands crossing the Fermi level. The band gap using GGA-PBE + U is 1.77 eV, whereU for Fe 3+ is 6 eV and Fe 2+ is 4 eV. The calculations of the total and partial density of states (pDOS) present the Fe, C and N orbitals at the valence band and conduction band. Other electronic properties such as electron density were also calculated. The intercalation voltage with different numbers of K + in PB is calculated to be 4.33 and 1.40 V for KPB and K 2 PB, respectively. It was found that the calculated voltage has been improved near the experimental value. Therefore, the first-principles calculation in this work can give more understanding of the behavior of pure PB, KPB and K 2 PB for its uses as cathode material in KIB.
doi_str_mv 10.1007/s10008-023-05402-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2798758050</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2798758050</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-db9c69620b80ff6f71d9e8e4bc58e6de8cd36bdb6696f47b570f8953dde48ce63</originalsourceid><addsrcrecordid>eNp9kc1u1DAUhaMKpJbCC7C6EpsZqYGbP9tZsECjDiAq6AJWCFmOfd1JlYlT26nKji3P1LfhSXA6ldix8O8951zpfln2ssDXBSJ_E9KOIseyyrGpscyro-ykqKv05Ew8ebiXuaiFOM6ehXCNWHBW4El2v-19iPnk-1H300AB1DR5p_QOooO4IwjRzzrOXg1nQAPp6N3Ya1CjgX6M5LUaVOzdCLduiOqKwFm49HMIvRqhG2aC1ae7LX3f0mrzec1-rGF19-fX77dpFWdQrkEFmFykMfZqAK3izhmCvUrRy4d1fimrlDfvYenTqbjUKDzPnlo1BHrxeJ5m37bnXzcf8osv7z9u3l3kuuQYc9O1mrWsxE6gtczywrQkqO50I4gZEtpUrDMdSyJb867haEXbVMZQLTSx6jR7dchNg7mZKUR57WY_ppay5K3gjcAGk6o8qLR3IXiyMg11r_xPWaBcIMkDJJkgyQdIskqm6mAKC4Er8v-i_-P6C4_0mXw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2798758050</pqid></control><display><type>article</type><title>First-principles approach to the structural, electronic and intercalation voltage of Prussian blue (KxFe[Fe(CN)6]) (x = 1, 2) as potential cathode material for potassium ion batteries</title><source>Springer Nature - Complete Springer Journals</source><creator>Sazman, F. N. ; Zaki, N. H. M. ; Badrudin, F. W. ; Samat, M. H. ; Malik, N. A. ; Nor, N. A. N. M. ; Hassan, O. H. ; Yahya, M. Z. A. ; Taib, M. F. M.</creator><creatorcontrib>Sazman, F. N. ; Zaki, N. H. M. ; Badrudin, F. W. ; Samat, M. H. ; Malik, N. A. ; Nor, N. A. N. M. ; Hassan, O. H. ; Yahya, M. Z. A. ; Taib, M. F. M.</creatorcontrib><description>Prussian blue (PB) is a good candidate as cathode material in potassium ion batteries (KIB) due to its high electrochemical performance. Thus, to verify the performance, the structural and electronic properties of PB were performed using first-principles studies based on the density functional theory (DFT) method. The properties of PB, KPB and K 2 PB were calculated using the Cambridge Serial Total Energy Package (CASTEP) computer code. From the geometrical optimization of pure PB, the generalized gradient approximation for Perdew-Burke-Ernzerhof (GGA-PBE) functional shows the most comparable structural properties compared to local density approximation by Ceperley and Adler as parameterized by Perdew and Zunger (LDA-CAPZ) and the generalized gradient approximation for Perdew-Burke-Ernzerhof for solids (GGA-PBEsol) functional. In addition, the electronic properties of the pure PB band gap is 0.72 eV which is slightly underestimated from the experimental value. Thus, the Hubbard U was used to broaden the bands crossing the Fermi level. The band gap using GGA-PBE + U is 1.77 eV, whereU for Fe 3+ is 6 eV and Fe 2+ is 4 eV. The calculations of the total and partial density of states (pDOS) present the Fe, C and N orbitals at the valence band and conduction band. Other electronic properties such as electron density were also calculated. The intercalation voltage with different numbers of K + in PB is calculated to be 4.33 and 1.40 V for KPB and K 2 PB, respectively. It was found that the calculated voltage has been improved near the experimental value. Therefore, the first-principles calculation in this work can give more understanding of the behavior of pure PB, KPB and K 2 PB for its uses as cathode material in KIB.</description><identifier>ISSN: 1432-8488</identifier><identifier>EISSN: 1433-0768</identifier><identifier>DOI: 10.1007/s10008-023-05402-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analytical Chemistry ; Approximation ; Batteries ; Cathodes ; Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Condensed Matter Physics ; Conduction bands ; Density functional theory ; Electric potential ; Electrochemical analysis ; Electrochemistry ; Electrode materials ; Electron density ; Electronic properties ; Electrons ; Energy gap ; Energy Storage ; First principles ; Intercalation ; Mathematical analysis ; Optimization ; Original Paper ; Physical Chemistry ; Pigments ; Potassium ; Valence band ; Voltage</subject><ispartof>Journal of solid state electrochemistry, 2023-05, Vol.27 (5), p.1095-1106</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-db9c69620b80ff6f71d9e8e4bc58e6de8cd36bdb6696f47b570f8953dde48ce63</cites><orcidid>0000-0002-3244-4939</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10008-023-05402-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10008-023-05402-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Sazman, F. N.</creatorcontrib><creatorcontrib>Zaki, N. H. M.</creatorcontrib><creatorcontrib>Badrudin, F. W.</creatorcontrib><creatorcontrib>Samat, M. H.</creatorcontrib><creatorcontrib>Malik, N. A.</creatorcontrib><creatorcontrib>Nor, N. A. N. M.</creatorcontrib><creatorcontrib>Hassan, O. H.</creatorcontrib><creatorcontrib>Yahya, M. Z. A.</creatorcontrib><creatorcontrib>Taib, M. F. M.</creatorcontrib><title>First-principles approach to the structural, electronic and intercalation voltage of Prussian blue (KxFe[Fe(CN)6]) (x = 1, 2) as potential cathode material for potassium ion batteries</title><title>Journal of solid state electrochemistry</title><addtitle>J Solid State Electrochem</addtitle><description>Prussian blue (PB) is a good candidate as cathode material in potassium ion batteries (KIB) due to its high electrochemical performance. Thus, to verify the performance, the structural and electronic properties of PB were performed using first-principles studies based on the density functional theory (DFT) method. The properties of PB, KPB and K 2 PB were calculated using the Cambridge Serial Total Energy Package (CASTEP) computer code. From the geometrical optimization of pure PB, the generalized gradient approximation for Perdew-Burke-Ernzerhof (GGA-PBE) functional shows the most comparable structural properties compared to local density approximation by Ceperley and Adler as parameterized by Perdew and Zunger (LDA-CAPZ) and the generalized gradient approximation for Perdew-Burke-Ernzerhof for solids (GGA-PBEsol) functional. In addition, the electronic properties of the pure PB band gap is 0.72 eV which is slightly underestimated from the experimental value. Thus, the Hubbard U was used to broaden the bands crossing the Fermi level. The band gap using GGA-PBE + U is 1.77 eV, whereU for Fe 3+ is 6 eV and Fe 2+ is 4 eV. The calculations of the total and partial density of states (pDOS) present the Fe, C and N orbitals at the valence band and conduction band. Other electronic properties such as electron density were also calculated. The intercalation voltage with different numbers of K + in PB is calculated to be 4.33 and 1.40 V for KPB and K 2 PB, respectively. It was found that the calculated voltage has been improved near the experimental value. Therefore, the first-principles calculation in this work can give more understanding of the behavior of pure PB, KPB and K 2 PB for its uses as cathode material in KIB.</description><subject>Analytical Chemistry</subject><subject>Approximation</subject><subject>Batteries</subject><subject>Cathodes</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Conduction bands</subject><subject>Density functional theory</subject><subject>Electric potential</subject><subject>Electrochemical analysis</subject><subject>Electrochemistry</subject><subject>Electrode materials</subject><subject>Electron density</subject><subject>Electronic properties</subject><subject>Electrons</subject><subject>Energy gap</subject><subject>Energy Storage</subject><subject>First principles</subject><subject>Intercalation</subject><subject>Mathematical analysis</subject><subject>Optimization</subject><subject>Original Paper</subject><subject>Physical Chemistry</subject><subject>Pigments</subject><subject>Potassium</subject><subject>Valence band</subject><subject>Voltage</subject><issn>1432-8488</issn><issn>1433-0768</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kc1u1DAUhaMKpJbCC7C6EpsZqYGbP9tZsECjDiAq6AJWCFmOfd1JlYlT26nKji3P1LfhSXA6ldix8O8951zpfln2ssDXBSJ_E9KOIseyyrGpscyro-ykqKv05Ew8ebiXuaiFOM6ehXCNWHBW4El2v-19iPnk-1H300AB1DR5p_QOooO4IwjRzzrOXg1nQAPp6N3Ya1CjgX6M5LUaVOzdCLduiOqKwFm49HMIvRqhG2aC1ae7LX3f0mrzec1-rGF19-fX77dpFWdQrkEFmFykMfZqAK3izhmCvUrRy4d1fimrlDfvYenTqbjUKDzPnlo1BHrxeJ5m37bnXzcf8osv7z9u3l3kuuQYc9O1mrWsxE6gtczywrQkqO50I4gZEtpUrDMdSyJb867haEXbVMZQLTSx6jR7dchNg7mZKUR57WY_ppay5K3gjcAGk6o8qLR3IXiyMg11r_xPWaBcIMkDJJkgyQdIskqm6mAKC4Er8v-i_-P6C4_0mXw</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Sazman, F. N.</creator><creator>Zaki, N. H. M.</creator><creator>Badrudin, F. W.</creator><creator>Samat, M. H.</creator><creator>Malik, N. A.</creator><creator>Nor, N. A. N. M.</creator><creator>Hassan, O. H.</creator><creator>Yahya, M. Z. A.</creator><creator>Taib, M. F. M.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3244-4939</orcidid></search><sort><creationdate>20230501</creationdate><title>First-principles approach to the structural, electronic and intercalation voltage of Prussian blue (KxFe[Fe(CN)6]) (x = 1, 2) as potential cathode material for potassium ion batteries</title><author>Sazman, F. N. ; Zaki, N. H. M. ; Badrudin, F. W. ; Samat, M. H. ; Malik, N. A. ; Nor, N. A. N. M. ; Hassan, O. H. ; Yahya, M. Z. A. ; Taib, M. F. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-db9c69620b80ff6f71d9e8e4bc58e6de8cd36bdb6696f47b570f8953dde48ce63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analytical Chemistry</topic><topic>Approximation</topic><topic>Batteries</topic><topic>Cathodes</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Conduction bands</topic><topic>Density functional theory</topic><topic>Electric potential</topic><topic>Electrochemical analysis</topic><topic>Electrochemistry</topic><topic>Electrode materials</topic><topic>Electron density</topic><topic>Electronic properties</topic><topic>Electrons</topic><topic>Energy gap</topic><topic>Energy Storage</topic><topic>First principles</topic><topic>Intercalation</topic><topic>Mathematical analysis</topic><topic>Optimization</topic><topic>Original Paper</topic><topic>Physical Chemistry</topic><topic>Pigments</topic><topic>Potassium</topic><topic>Valence band</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sazman, F. N.</creatorcontrib><creatorcontrib>Zaki, N. H. M.</creatorcontrib><creatorcontrib>Badrudin, F. W.</creatorcontrib><creatorcontrib>Samat, M. H.</creatorcontrib><creatorcontrib>Malik, N. A.</creatorcontrib><creatorcontrib>Nor, N. A. N. M.</creatorcontrib><creatorcontrib>Hassan, O. H.</creatorcontrib><creatorcontrib>Yahya, M. Z. A.</creatorcontrib><creatorcontrib>Taib, M. F. M.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of solid state electrochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sazman, F. N.</au><au>Zaki, N. H. M.</au><au>Badrudin, F. W.</au><au>Samat, M. H.</au><au>Malik, N. A.</au><au>Nor, N. A. N. M.</au><au>Hassan, O. H.</au><au>Yahya, M. Z. A.</au><au>Taib, M. F. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>First-principles approach to the structural, electronic and intercalation voltage of Prussian blue (KxFe[Fe(CN)6]) (x = 1, 2) as potential cathode material for potassium ion batteries</atitle><jtitle>Journal of solid state electrochemistry</jtitle><stitle>J Solid State Electrochem</stitle><date>2023-05-01</date><risdate>2023</risdate><volume>27</volume><issue>5</issue><spage>1095</spage><epage>1106</epage><pages>1095-1106</pages><issn>1432-8488</issn><eissn>1433-0768</eissn><abstract>Prussian blue (PB) is a good candidate as cathode material in potassium ion batteries (KIB) due to its high electrochemical performance. Thus, to verify the performance, the structural and electronic properties of PB were performed using first-principles studies based on the density functional theory (DFT) method. The properties of PB, KPB and K 2 PB were calculated using the Cambridge Serial Total Energy Package (CASTEP) computer code. From the geometrical optimization of pure PB, the generalized gradient approximation for Perdew-Burke-Ernzerhof (GGA-PBE) functional shows the most comparable structural properties compared to local density approximation by Ceperley and Adler as parameterized by Perdew and Zunger (LDA-CAPZ) and the generalized gradient approximation for Perdew-Burke-Ernzerhof for solids (GGA-PBEsol) functional. In addition, the electronic properties of the pure PB band gap is 0.72 eV which is slightly underestimated from the experimental value. Thus, the Hubbard U was used to broaden the bands crossing the Fermi level. The band gap using GGA-PBE + U is 1.77 eV, whereU for Fe 3+ is 6 eV and Fe 2+ is 4 eV. The calculations of the total and partial density of states (pDOS) present the Fe, C and N orbitals at the valence band and conduction band. Other electronic properties such as electron density were also calculated. The intercalation voltage with different numbers of K + in PB is calculated to be 4.33 and 1.40 V for KPB and K 2 PB, respectively. It was found that the calculated voltage has been improved near the experimental value. Therefore, the first-principles calculation in this work can give more understanding of the behavior of pure PB, KPB and K 2 PB for its uses as cathode material in KIB.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10008-023-05402-3</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-3244-4939</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1432-8488
ispartof Journal of solid state electrochemistry, 2023-05, Vol.27 (5), p.1095-1106
issn 1432-8488
1433-0768
language eng
recordid cdi_proquest_journals_2798758050
source Springer Nature - Complete Springer Journals
subjects Analytical Chemistry
Approximation
Batteries
Cathodes
Characterization and Evaluation of Materials
Chemistry
Chemistry and Materials Science
Condensed Matter Physics
Conduction bands
Density functional theory
Electric potential
Electrochemical analysis
Electrochemistry
Electrode materials
Electron density
Electronic properties
Electrons
Energy gap
Energy Storage
First principles
Intercalation
Mathematical analysis
Optimization
Original Paper
Physical Chemistry
Pigments
Potassium
Valence band
Voltage
title First-principles approach to the structural, electronic and intercalation voltage of Prussian blue (KxFe[Fe(CN)6]) (x = 1, 2) as potential cathode material for potassium ion batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T16%3A25%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=First-principles%20approach%20to%20the%20structural,%20electronic%20and%20intercalation%20voltage%20of%20Prussian%20blue%20(KxFe%5BFe(CN)6%5D)%20(x%E2%80%89=%E2%80%891,%202)%20as%20potential%20cathode%20material%20for%20potassium%20ion%20batteries&rft.jtitle=Journal%20of%20solid%20state%20electrochemistry&rft.au=Sazman,%20F.%20N.&rft.date=2023-05-01&rft.volume=27&rft.issue=5&rft.spage=1095&rft.epage=1106&rft.pages=1095-1106&rft.issn=1432-8488&rft.eissn=1433-0768&rft_id=info:doi/10.1007/s10008-023-05402-3&rft_dat=%3Cproquest_cross%3E2798758050%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2798758050&rft_id=info:pmid/&rfr_iscdi=true