Basins of Attraction and Stability of Nonlinear Systems’ Equilibrium Points

The system of differential and operator equations is considered. This system is assumed to enjoy an equilibrium point. The Cauchy problem with the initial condition with respect to one of the desired functions is formulated. The second function controls the corresponding nonlinear dynamic process. T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Differential equations and dynamical systems 2023-04, Vol.31 (2), p.289-300
Hauptverfasser: Sidorov, Nikolay, Sidorov, Denis, Li, Yong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 300
container_issue 2
container_start_page 289
container_title Differential equations and dynamical systems
container_volume 31
creator Sidorov, Nikolay
Sidorov, Denis
Li, Yong
description The system of differential and operator equations is considered. This system is assumed to enjoy an equilibrium point. The Cauchy problem with the initial condition with respect to one of the desired functions is formulated. The second function controls the corresponding nonlinear dynamic process. The sufficient conditions of the global classical solution’s existence and stabilisation at infinity to the equilibrium point are formulated in the main theorem. Solution can be constructed by the method of successive approximations. If the conditions of the main theorem are not satisfied, then several solutions may exist. Some solutions can blow-up in a finite time, while others stabilise to an equilibrium point. The special case of considered systems of differential-operator equations are nonlinear systems of differential-algebraic equations which model various nonlinear phenomena in power systems, chemical processes and many other processes.
doi_str_mv 10.1007/s12591-019-00511-w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2798204745</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2798204745</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-90e80d8572f6f94776c45dd9b2f6c8c59b0f0bfdf9c84f0e3485ed1e0df88143</originalsourceid><addsrcrecordid>eNp9kMtKQzEQhoMoWKsv4OqA6-jknOQkWdZSL1Av0O7DuSSS0ua0SQ6lO1_D1_NJTFvBnauZYf7_n-FD6JrALQHgd4HkTBIMRGIARgjenqABSE5xKTicHnqCC0boOboIYQFQckn5AL3cV8G6kHUmG8XoqybazmWVa7NZrGq7tHG33712bmmdrnw224WoV-H78yubbPokqL3tV9l7Z10Ml-jMVMugr37rEM0fJvPxE56-PT6PR1PcFERGLEELaAXjuSlNeoOXDWVtK-s0N6JhsgYDtWmNbAQ1oAsqmG6JhtYIQWgxRDfH2LXvNr0OUS263rt0UeVcihwopyyp8qOq8V0IXhu19nZV-Z0ioPbU1JGaStTUgZraJlNxNIUkdh_a_0X_4_oBundxrQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2798204745</pqid></control><display><type>article</type><title>Basins of Attraction and Stability of Nonlinear Systems’ Equilibrium Points</title><source>SpringerLink Journals</source><creator>Sidorov, Nikolay ; Sidorov, Denis ; Li, Yong</creator><creatorcontrib>Sidorov, Nikolay ; Sidorov, Denis ; Li, Yong</creatorcontrib><description>The system of differential and operator equations is considered. This system is assumed to enjoy an equilibrium point. The Cauchy problem with the initial condition with respect to one of the desired functions is formulated. The second function controls the corresponding nonlinear dynamic process. The sufficient conditions of the global classical solution’s existence and stabilisation at infinity to the equilibrium point are formulated in the main theorem. Solution can be constructed by the method of successive approximations. If the conditions of the main theorem are not satisfied, then several solutions may exist. Some solutions can blow-up in a finite time, while others stabilise to an equilibrium point. The special case of considered systems of differential-operator equations are nonlinear systems of differential-algebraic equations which model various nonlinear phenomena in power systems, chemical processes and many other processes.</description><identifier>ISSN: 0971-3514</identifier><identifier>EISSN: 0974-6870</identifier><identifier>DOI: 10.1007/s12591-019-00511-w</identifier><language>eng</language><publisher>New Delhi: Springer India</publisher><subject>Cauchy problems ; Chemical reactions ; Computer Science ; Differential equations ; Dynamical systems ; Engineering ; Mathematics ; Mathematics and Statistics ; Nonlinear dynamics ; Nonlinear phenomena ; Nonlinear systems ; Operators (mathematics) ; Original Research ; Theorems</subject><ispartof>Differential equations and dynamical systems, 2023-04, Vol.31 (2), p.289-300</ispartof><rights>Foundation for Scientific Research and Technological Innovation 2019</rights><rights>Foundation for Scientific Research and Technological Innovation 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-90e80d8572f6f94776c45dd9b2f6c8c59b0f0bfdf9c84f0e3485ed1e0df88143</citedby><cites>FETCH-LOGICAL-c319t-90e80d8572f6f94776c45dd9b2f6c8c59b0f0bfdf9c84f0e3485ed1e0df88143</cites><orcidid>0000-0002-3131-1325</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12591-019-00511-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12591-019-00511-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Sidorov, Nikolay</creatorcontrib><creatorcontrib>Sidorov, Denis</creatorcontrib><creatorcontrib>Li, Yong</creatorcontrib><title>Basins of Attraction and Stability of Nonlinear Systems’ Equilibrium Points</title><title>Differential equations and dynamical systems</title><addtitle>Differ Equ Dyn Syst</addtitle><description>The system of differential and operator equations is considered. This system is assumed to enjoy an equilibrium point. The Cauchy problem with the initial condition with respect to one of the desired functions is formulated. The second function controls the corresponding nonlinear dynamic process. The sufficient conditions of the global classical solution’s existence and stabilisation at infinity to the equilibrium point are formulated in the main theorem. Solution can be constructed by the method of successive approximations. If the conditions of the main theorem are not satisfied, then several solutions may exist. Some solutions can blow-up in a finite time, while others stabilise to an equilibrium point. The special case of considered systems of differential-operator equations are nonlinear systems of differential-algebraic equations which model various nonlinear phenomena in power systems, chemical processes and many other processes.</description><subject>Cauchy problems</subject><subject>Chemical reactions</subject><subject>Computer Science</subject><subject>Differential equations</subject><subject>Dynamical systems</subject><subject>Engineering</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Nonlinear dynamics</subject><subject>Nonlinear phenomena</subject><subject>Nonlinear systems</subject><subject>Operators (mathematics)</subject><subject>Original Research</subject><subject>Theorems</subject><issn>0971-3514</issn><issn>0974-6870</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKQzEQhoMoWKsv4OqA6-jknOQkWdZSL1Av0O7DuSSS0ua0SQ6lO1_D1_NJTFvBnauZYf7_n-FD6JrALQHgd4HkTBIMRGIARgjenqABSE5xKTicHnqCC0boOboIYQFQckn5AL3cV8G6kHUmG8XoqybazmWVa7NZrGq7tHG33712bmmdrnw224WoV-H78yubbPokqL3tV9l7Z10Ml-jMVMugr37rEM0fJvPxE56-PT6PR1PcFERGLEELaAXjuSlNeoOXDWVtK-s0N6JhsgYDtWmNbAQ1oAsqmG6JhtYIQWgxRDfH2LXvNr0OUS263rt0UeVcihwopyyp8qOq8V0IXhu19nZV-Z0ioPbU1JGaStTUgZraJlNxNIUkdh_a_0X_4_oBundxrQ</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Sidorov, Nikolay</creator><creator>Sidorov, Denis</creator><creator>Li, Yong</creator><general>Springer India</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3131-1325</orcidid></search><sort><creationdate>20230401</creationdate><title>Basins of Attraction and Stability of Nonlinear Systems’ Equilibrium Points</title><author>Sidorov, Nikolay ; Sidorov, Denis ; Li, Yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-90e80d8572f6f94776c45dd9b2f6c8c59b0f0bfdf9c84f0e3485ed1e0df88143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cauchy problems</topic><topic>Chemical reactions</topic><topic>Computer Science</topic><topic>Differential equations</topic><topic>Dynamical systems</topic><topic>Engineering</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Nonlinear dynamics</topic><topic>Nonlinear phenomena</topic><topic>Nonlinear systems</topic><topic>Operators (mathematics)</topic><topic>Original Research</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sidorov, Nikolay</creatorcontrib><creatorcontrib>Sidorov, Denis</creatorcontrib><creatorcontrib>Li, Yong</creatorcontrib><collection>CrossRef</collection><jtitle>Differential equations and dynamical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sidorov, Nikolay</au><au>Sidorov, Denis</au><au>Li, Yong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Basins of Attraction and Stability of Nonlinear Systems’ Equilibrium Points</atitle><jtitle>Differential equations and dynamical systems</jtitle><stitle>Differ Equ Dyn Syst</stitle><date>2023-04-01</date><risdate>2023</risdate><volume>31</volume><issue>2</issue><spage>289</spage><epage>300</epage><pages>289-300</pages><issn>0971-3514</issn><eissn>0974-6870</eissn><abstract>The system of differential and operator equations is considered. This system is assumed to enjoy an equilibrium point. The Cauchy problem with the initial condition with respect to one of the desired functions is formulated. The second function controls the corresponding nonlinear dynamic process. The sufficient conditions of the global classical solution’s existence and stabilisation at infinity to the equilibrium point are formulated in the main theorem. Solution can be constructed by the method of successive approximations. If the conditions of the main theorem are not satisfied, then several solutions may exist. Some solutions can blow-up in a finite time, while others stabilise to an equilibrium point. The special case of considered systems of differential-operator equations are nonlinear systems of differential-algebraic equations which model various nonlinear phenomena in power systems, chemical processes and many other processes.</abstract><cop>New Delhi</cop><pub>Springer India</pub><doi>10.1007/s12591-019-00511-w</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-3131-1325</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0971-3514
ispartof Differential equations and dynamical systems, 2023-04, Vol.31 (2), p.289-300
issn 0971-3514
0974-6870
language eng
recordid cdi_proquest_journals_2798204745
source SpringerLink Journals
subjects Cauchy problems
Chemical reactions
Computer Science
Differential equations
Dynamical systems
Engineering
Mathematics
Mathematics and Statistics
Nonlinear dynamics
Nonlinear phenomena
Nonlinear systems
Operators (mathematics)
Original Research
Theorems
title Basins of Attraction and Stability of Nonlinear Systems’ Equilibrium Points
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T13%3A31%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Basins%20of%20Attraction%20and%20Stability%20of%20Nonlinear%20Systems%E2%80%99%20Equilibrium%20Points&rft.jtitle=Differential%20equations%20and%20dynamical%20systems&rft.au=Sidorov,%20Nikolay&rft.date=2023-04-01&rft.volume=31&rft.issue=2&rft.spage=289&rft.epage=300&rft.pages=289-300&rft.issn=0971-3514&rft.eissn=0974-6870&rft_id=info:doi/10.1007/s12591-019-00511-w&rft_dat=%3Cproquest_cross%3E2798204745%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2798204745&rft_id=info:pmid/&rfr_iscdi=true