FAD Technique and Differentiation of a Composite Function

Different approaches to the calculation of the gradient of a composite function of several variables are compared, namely, exact analytically derived formulas, formulas based on the fast automatic differentiation (FAD) technique, and standard software packages implementing the ideas of the FAD techn...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational mathematics and mathematical physics 2023, Vol.63 (1), p.57-68
Hauptverfasser: Albu, A. F., Gorchakov, A. Yu, Zubov, V. I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 68
container_issue 1
container_start_page 57
container_title Computational mathematics and mathematical physics
container_volume 63
creator Albu, A. F.
Gorchakov, A. Yu
Zubov, V. I.
description Different approaches to the calculation of the gradient of a composite function of several variables are compared, namely, exact analytically derived formulas, formulas based on the fast automatic differentiation (FAD) technique, and standard software packages implementing the ideas of the FAD technique. The approaches are compared as applied to a composite function representing the energy of a system of atoms with the Tersoff interatomic potential. The comparison criterion is the computer time required for computing the gradient of the function. The results show that the FAD technique is superior to the analytical formulas. The standard packages take nearly the same time to compute the function gradient as the FAD technique formulas.
doi_str_mv 10.1134/S0965542523010037
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2798204526</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2798204526</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-e4df93662cd87d0d1bb4d81d93643408b356a128dd3069f10590758a0c4109e23</originalsourceid><addsrcrecordid>eNp1UMtKAzEUDaJgrX6Au4Dr0ZvnJMvSWhUKLqzrIZ0kOsUmYzJd-PdmGMGFuLpwXvdwELomcEsI43cvoKUQnArKgACw-gTNiBCiklLSUzQb6Wrkz9FFznsAIrViM6TXixXeuvY9dJ9Hh02weNV575ILQ2eGLgYcPTZ4GQ99zN3g8PoY2hG_RGfefGR39XPn6HV9v10-Vpvnh6flYlO1VKqhctx6zUqJ1qragiW7HbeK2IJxxkHtmJCGUGUtA6k9AaGhFspAywloR9kc3Uy5fYqlYh6afTymUF42tNaKAhdUFhWZVG2KOSfnmz51B5O-GgLNuFDzZ6HioZMnF214c-k3-X_TN6pdZN4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2798204526</pqid></control><display><type>article</type><title>FAD Technique and Differentiation of a Composite Function</title><source>SpringerLink Journals</source><creator>Albu, A. F. ; Gorchakov, A. Yu ; Zubov, V. I.</creator><creatorcontrib>Albu, A. F. ; Gorchakov, A. Yu ; Zubov, V. I.</creatorcontrib><description>Different approaches to the calculation of the gradient of a composite function of several variables are compared, namely, exact analytically derived formulas, formulas based on the fast automatic differentiation (FAD) technique, and standard software packages implementing the ideas of the FAD technique. The approaches are compared as applied to a composite function representing the energy of a system of atoms with the Tersoff interatomic potential. The comparison criterion is the computer time required for computing the gradient of the function. The results show that the FAD technique is superior to the analytical formulas. The standard packages take nearly the same time to compute the function gradient as the FAD technique formulas.</description><identifier>ISSN: 0965-5425</identifier><identifier>EISSN: 1555-6662</identifier><identifier>DOI: 10.1134/S0965542523010037</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Composite functions ; Computational Mathematics and Numerical Analysis ; Differentiation ; Mathematics ; Mathematics and Statistics ; Optimal Control ; Packages</subject><ispartof>Computational mathematics and mathematical physics, 2023, Vol.63 (1), p.57-68</ispartof><rights>Pleiades Publishing, Ltd. 2023. ISSN 0965-5425, Computational Mathematics and Mathematical Physics, 2023, Vol. 63, No. 1, pp. 57–68. © Pleiades Publishing, Ltd., 2023. Russian Text © The Author(s), 2023, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2023, Vol. 63, No. 1, pp. 61–73.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-e4df93662cd87d0d1bb4d81d93643408b356a128dd3069f10590758a0c4109e23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0965542523010037$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0965542523010037$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Albu, A. F.</creatorcontrib><creatorcontrib>Gorchakov, A. Yu</creatorcontrib><creatorcontrib>Zubov, V. I.</creatorcontrib><title>FAD Technique and Differentiation of a Composite Function</title><title>Computational mathematics and mathematical physics</title><addtitle>Comput. Math. and Math. Phys</addtitle><description>Different approaches to the calculation of the gradient of a composite function of several variables are compared, namely, exact analytically derived formulas, formulas based on the fast automatic differentiation (FAD) technique, and standard software packages implementing the ideas of the FAD technique. The approaches are compared as applied to a composite function representing the energy of a system of atoms with the Tersoff interatomic potential. The comparison criterion is the computer time required for computing the gradient of the function. The results show that the FAD technique is superior to the analytical formulas. The standard packages take nearly the same time to compute the function gradient as the FAD technique formulas.</description><subject>Composite functions</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Differentiation</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Optimal Control</subject><subject>Packages</subject><issn>0965-5425</issn><issn>1555-6662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1UMtKAzEUDaJgrX6Au4Dr0ZvnJMvSWhUKLqzrIZ0kOsUmYzJd-PdmGMGFuLpwXvdwELomcEsI43cvoKUQnArKgACw-gTNiBCiklLSUzQb6Wrkz9FFznsAIrViM6TXixXeuvY9dJ9Hh02weNV575ILQ2eGLgYcPTZ4GQ99zN3g8PoY2hG_RGfefGR39XPn6HV9v10-Vpvnh6flYlO1VKqhctx6zUqJ1qragiW7HbeK2IJxxkHtmJCGUGUtA6k9AaGhFspAywloR9kc3Uy5fYqlYh6afTymUF42tNaKAhdUFhWZVG2KOSfnmz51B5O-GgLNuFDzZ6HioZMnF214c-k3-X_TN6pdZN4</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Albu, A. F.</creator><creator>Gorchakov, A. Yu</creator><creator>Zubov, V. I.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2023</creationdate><title>FAD Technique and Differentiation of a Composite Function</title><author>Albu, A. F. ; Gorchakov, A. Yu ; Zubov, V. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-e4df93662cd87d0d1bb4d81d93643408b356a128dd3069f10590758a0c4109e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Composite functions</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Differentiation</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Optimal Control</topic><topic>Packages</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Albu, A. F.</creatorcontrib><creatorcontrib>Gorchakov, A. Yu</creatorcontrib><creatorcontrib>Zubov, V. I.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computational mathematics and mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Albu, A. F.</au><au>Gorchakov, A. Yu</au><au>Zubov, V. I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FAD Technique and Differentiation of a Composite Function</atitle><jtitle>Computational mathematics and mathematical physics</jtitle><stitle>Comput. Math. and Math. Phys</stitle><date>2023</date><risdate>2023</risdate><volume>63</volume><issue>1</issue><spage>57</spage><epage>68</epage><pages>57-68</pages><issn>0965-5425</issn><eissn>1555-6662</eissn><abstract>Different approaches to the calculation of the gradient of a composite function of several variables are compared, namely, exact analytically derived formulas, formulas based on the fast automatic differentiation (FAD) technique, and standard software packages implementing the ideas of the FAD technique. The approaches are compared as applied to a composite function representing the energy of a system of atoms with the Tersoff interatomic potential. The comparison criterion is the computer time required for computing the gradient of the function. The results show that the FAD technique is superior to the analytical formulas. The standard packages take nearly the same time to compute the function gradient as the FAD technique formulas.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0965542523010037</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0965-5425
ispartof Computational mathematics and mathematical physics, 2023, Vol.63 (1), p.57-68
issn 0965-5425
1555-6662
language eng
recordid cdi_proquest_journals_2798204526
source SpringerLink Journals
subjects Composite functions
Computational Mathematics and Numerical Analysis
Differentiation
Mathematics
Mathematics and Statistics
Optimal Control
Packages
title FAD Technique and Differentiation of a Composite Function
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T04%3A57%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FAD%20Technique%20and%20Differentiation%20of%20a%20Composite%20Function&rft.jtitle=Computational%20mathematics%20and%20mathematical%20physics&rft.au=Albu,%20A.%20F.&rft.date=2023&rft.volume=63&rft.issue=1&rft.spage=57&rft.epage=68&rft.pages=57-68&rft.issn=0965-5425&rft.eissn=1555-6662&rft_id=info:doi/10.1134/S0965542523010037&rft_dat=%3Cproquest_cross%3E2798204526%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2798204526&rft_id=info:pmid/&rfr_iscdi=true