FAD Technique and Differentiation of a Composite Function
Different approaches to the calculation of the gradient of a composite function of several variables are compared, namely, exact analytically derived formulas, formulas based on the fast automatic differentiation (FAD) technique, and standard software packages implementing the ideas of the FAD techn...
Gespeichert in:
Veröffentlicht in: | Computational mathematics and mathematical physics 2023, Vol.63 (1), p.57-68 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 68 |
---|---|
container_issue | 1 |
container_start_page | 57 |
container_title | Computational mathematics and mathematical physics |
container_volume | 63 |
creator | Albu, A. F. Gorchakov, A. Yu Zubov, V. I. |
description | Different approaches to the calculation of the gradient of a composite function of several variables are compared, namely, exact analytically derived formulas, formulas based on the fast automatic differentiation (FAD) technique, and standard software packages implementing the ideas of the FAD technique. The approaches are compared as applied to a composite function representing the energy of a system of atoms with the Tersoff interatomic potential. The comparison criterion is the computer time required for computing the gradient of the function. The results show that the FAD technique is superior to the analytical formulas. The standard packages take nearly the same time to compute the function gradient as the FAD technique formulas. |
doi_str_mv | 10.1134/S0965542523010037 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2798204526</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2798204526</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-e4df93662cd87d0d1bb4d81d93643408b356a128dd3069f10590758a0c4109e23</originalsourceid><addsrcrecordid>eNp1UMtKAzEUDaJgrX6Au4Dr0ZvnJMvSWhUKLqzrIZ0kOsUmYzJd-PdmGMGFuLpwXvdwELomcEsI43cvoKUQnArKgACw-gTNiBCiklLSUzQb6Wrkz9FFznsAIrViM6TXixXeuvY9dJ9Hh02weNV575ILQ2eGLgYcPTZ4GQ99zN3g8PoY2hG_RGfefGR39XPn6HV9v10-Vpvnh6flYlO1VKqhctx6zUqJ1qragiW7HbeK2IJxxkHtmJCGUGUtA6k9AaGhFspAywloR9kc3Uy5fYqlYh6afTymUF42tNaKAhdUFhWZVG2KOSfnmz51B5O-GgLNuFDzZ6HioZMnF214c-k3-X_TN6pdZN4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2798204526</pqid></control><display><type>article</type><title>FAD Technique and Differentiation of a Composite Function</title><source>SpringerLink Journals</source><creator>Albu, A. F. ; Gorchakov, A. Yu ; Zubov, V. I.</creator><creatorcontrib>Albu, A. F. ; Gorchakov, A. Yu ; Zubov, V. I.</creatorcontrib><description>Different approaches to the calculation of the gradient of a composite function of several variables are compared, namely, exact analytically derived formulas, formulas based on the fast automatic differentiation (FAD) technique, and standard software packages implementing the ideas of the FAD technique. The approaches are compared as applied to a composite function representing the energy of a system of atoms with the Tersoff interatomic potential. The comparison criterion is the computer time required for computing the gradient of the function. The results show that the FAD technique is superior to the analytical formulas. The standard packages take nearly the same time to compute the function gradient as the FAD technique formulas.</description><identifier>ISSN: 0965-5425</identifier><identifier>EISSN: 1555-6662</identifier><identifier>DOI: 10.1134/S0965542523010037</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Composite functions ; Computational Mathematics and Numerical Analysis ; Differentiation ; Mathematics ; Mathematics and Statistics ; Optimal Control ; Packages</subject><ispartof>Computational mathematics and mathematical physics, 2023, Vol.63 (1), p.57-68</ispartof><rights>Pleiades Publishing, Ltd. 2023. ISSN 0965-5425, Computational Mathematics and Mathematical Physics, 2023, Vol. 63, No. 1, pp. 57–68. © Pleiades Publishing, Ltd., 2023. Russian Text © The Author(s), 2023, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2023, Vol. 63, No. 1, pp. 61–73.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-e4df93662cd87d0d1bb4d81d93643408b356a128dd3069f10590758a0c4109e23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0965542523010037$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0965542523010037$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Albu, A. F.</creatorcontrib><creatorcontrib>Gorchakov, A. Yu</creatorcontrib><creatorcontrib>Zubov, V. I.</creatorcontrib><title>FAD Technique and Differentiation of a Composite Function</title><title>Computational mathematics and mathematical physics</title><addtitle>Comput. Math. and Math. Phys</addtitle><description>Different approaches to the calculation of the gradient of a composite function of several variables are compared, namely, exact analytically derived formulas, formulas based on the fast automatic differentiation (FAD) technique, and standard software packages implementing the ideas of the FAD technique. The approaches are compared as applied to a composite function representing the energy of a system of atoms with the Tersoff interatomic potential. The comparison criterion is the computer time required for computing the gradient of the function. The results show that the FAD technique is superior to the analytical formulas. The standard packages take nearly the same time to compute the function gradient as the FAD technique formulas.</description><subject>Composite functions</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Differentiation</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Optimal Control</subject><subject>Packages</subject><issn>0965-5425</issn><issn>1555-6662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1UMtKAzEUDaJgrX6Au4Dr0ZvnJMvSWhUKLqzrIZ0kOsUmYzJd-PdmGMGFuLpwXvdwELomcEsI43cvoKUQnArKgACw-gTNiBCiklLSUzQb6Wrkz9FFznsAIrViM6TXixXeuvY9dJ9Hh02weNV575ILQ2eGLgYcPTZ4GQ99zN3g8PoY2hG_RGfefGR39XPn6HV9v10-Vpvnh6flYlO1VKqhctx6zUqJ1qragiW7HbeK2IJxxkHtmJCGUGUtA6k9AaGhFspAywloR9kc3Uy5fYqlYh6afTymUF42tNaKAhdUFhWZVG2KOSfnmz51B5O-GgLNuFDzZ6HioZMnF214c-k3-X_TN6pdZN4</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Albu, A. F.</creator><creator>Gorchakov, A. Yu</creator><creator>Zubov, V. I.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2023</creationdate><title>FAD Technique and Differentiation of a Composite Function</title><author>Albu, A. F. ; Gorchakov, A. Yu ; Zubov, V. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-e4df93662cd87d0d1bb4d81d93643408b356a128dd3069f10590758a0c4109e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Composite functions</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Differentiation</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Optimal Control</topic><topic>Packages</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Albu, A. F.</creatorcontrib><creatorcontrib>Gorchakov, A. Yu</creatorcontrib><creatorcontrib>Zubov, V. I.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computational mathematics and mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Albu, A. F.</au><au>Gorchakov, A. Yu</au><au>Zubov, V. I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FAD Technique and Differentiation of a Composite Function</atitle><jtitle>Computational mathematics and mathematical physics</jtitle><stitle>Comput. Math. and Math. Phys</stitle><date>2023</date><risdate>2023</risdate><volume>63</volume><issue>1</issue><spage>57</spage><epage>68</epage><pages>57-68</pages><issn>0965-5425</issn><eissn>1555-6662</eissn><abstract>Different approaches to the calculation of the gradient of a composite function of several variables are compared, namely, exact analytically derived formulas, formulas based on the fast automatic differentiation (FAD) technique, and standard software packages implementing the ideas of the FAD technique. The approaches are compared as applied to a composite function representing the energy of a system of atoms with the Tersoff interatomic potential. The comparison criterion is the computer time required for computing the gradient of the function. The results show that the FAD technique is superior to the analytical formulas. The standard packages take nearly the same time to compute the function gradient as the FAD technique formulas.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0965542523010037</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0965-5425 |
ispartof | Computational mathematics and mathematical physics, 2023, Vol.63 (1), p.57-68 |
issn | 0965-5425 1555-6662 |
language | eng |
recordid | cdi_proquest_journals_2798204526 |
source | SpringerLink Journals |
subjects | Composite functions Computational Mathematics and Numerical Analysis Differentiation Mathematics Mathematics and Statistics Optimal Control Packages |
title | FAD Technique and Differentiation of a Composite Function |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T04%3A57%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FAD%20Technique%20and%20Differentiation%20of%20a%20Composite%20Function&rft.jtitle=Computational%20mathematics%20and%20mathematical%20physics&rft.au=Albu,%20A.%20F.&rft.date=2023&rft.volume=63&rft.issue=1&rft.spage=57&rft.epage=68&rft.pages=57-68&rft.issn=0965-5425&rft.eissn=1555-6662&rft_id=info:doi/10.1134/S0965542523010037&rft_dat=%3Cproquest_cross%3E2798204526%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2798204526&rft_id=info:pmid/&rfr_iscdi=true |