A moving target tracking framework based on a set and its topological space

Moving target tracking is a technology that matches frames and images based on target characteristics. This technology is widely utilized in intelligent transportation, logistics transportation, public security, sports event broadcasting, and other fields. Existing research focuses primarily on impr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2023-01, Vol.11, p.1-1
Hauptverfasser: Zeng, Weibo, Min, Xinran, Deng, Qiuyan, Zhao, Xingyue
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE access
container_volume 11
creator Zeng, Weibo
Min, Xinran
Deng, Qiuyan
Zhao, Xingyue
description Moving target tracking is a technology that matches frames and images based on target characteristics. This technology is widely utilized in intelligent transportation, logistics transportation, public security, sports event broadcasting, and other fields. Existing research focuses primarily on improving target detection and tracking algorithms to improve target retrieval and tracking efficiency. However, the majority of studies focus on global and full-range retrieval. More importantly, in large video scenes with multiple camera collaborations, these methods rarely consider the efficiency of target retrieval and tracking. Based on relevant theories and methods of video GIS, set theory, and topology, in this paper, a set and its topology space covering road networks, cameras, videos, and key frames were constructed. Additionally, the positioning, tracking, and track representation of a moving target based on the set and its topology space were solved. Compared to the feature vector algorithm, video summarization and Meanshift algorithm, the experimental findings reveal that the target retrieval performance, algorithm stability, and robustness are improved.
doi_str_mv 10.1109/ACCESS.2023.3262994
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2797304928</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10086503</ieee_id><doaj_id>oai_doaj_org_article_d5628bd8f50e49c2b528813dd5130c1e</doaj_id><sourcerecordid>2797304928</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-cb36b2921a870bd5ce3f2d67e8dd34e9f53b1fc87f32e4835a7f1961d6421b713</originalsourceid><addsrcrecordid>eNpNUU1LAzEQXUTBov0Fegh4bk0ym2xyLKVqUfBQPYdsMinbr9Rkq_jv3boincvMPN57M_CK4obRMWNU30-m09liMeaUwxi45FqXZ8WAM6lHIECen8yXxTDnFe1KdZCoBsXzhGzjZ7NbktamJbakTdatj3tIdotfMa1JbTN6EnfEktwx7M6Tps2kjfu4icvG2Q3Je-vwurgIdpNx-NeviveH2dv0afTy-jifTl5GDoRuR64GWXPNmVUVrb1wCIF7WaHyHkrUQUDNglNVAI6lAmGrwLRkXpac1RWDq2Le-_poV2afmq1N3ybaxvwCMS2NTW3jNmi8kFzVXgVBsdSO14IrxcB7wYA6hp3XXe-1T_HjgLk1q3hIu-59wytdAS01Vx0LepZLMeeE4f8qo-YYgulDMMcQzF8Ineq2VzWIeKKgSgoK8AN0-YG8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2797304928</pqid></control><display><type>article</type><title>A moving target tracking framework based on a set and its topological space</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Zeng, Weibo ; Min, Xinran ; Deng, Qiuyan ; Zhao, Xingyue</creator><creatorcontrib>Zeng, Weibo ; Min, Xinran ; Deng, Qiuyan ; Zhao, Xingyue</creatorcontrib><description>Moving target tracking is a technology that matches frames and images based on target characteristics. This technology is widely utilized in intelligent transportation, logistics transportation, public security, sports event broadcasting, and other fields. Existing research focuses primarily on improving target detection and tracking algorithms to improve target retrieval and tracking efficiency. However, the majority of studies focus on global and full-range retrieval. More importantly, in large video scenes with multiple camera collaborations, these methods rarely consider the efficiency of target retrieval and tracking. Based on relevant theories and methods of video GIS, set theory, and topology, in this paper, a set and its topology space covering road networks, cameras, videos, and key frames were constructed. Additionally, the positioning, tracking, and track representation of a moving target based on the set and its topology space were solved. Compared to the feature vector algorithm, video summarization and Meanshift algorithm, the experimental findings reveal that the target retrieval performance, algorithm stability, and robustness are improved.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3262994</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Camera network ; Cameras ; Frames (data processing) ; Moving target tracking ; Moving targets ; Network topology ; Particle filters ; Retrieval ; Road traffic ; Roads ; Set theory ; Target detection ; Target tracking ; Topological space ; Topology ; Tracking ; Trajectory ; Transportation networks ; Video data</subject><ispartof>IEEE access, 2023-01, Vol.11, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-cb36b2921a870bd5ce3f2d67e8dd34e9f53b1fc87f32e4835a7f1961d6421b713</cites><orcidid>0000-0001-9035-7836 ; 0009-0007-8054-8840 ; 0000-0001-8746-3531 ; 0009-0004-0369-5546</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10086503$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,27610,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Zeng, Weibo</creatorcontrib><creatorcontrib>Min, Xinran</creatorcontrib><creatorcontrib>Deng, Qiuyan</creatorcontrib><creatorcontrib>Zhao, Xingyue</creatorcontrib><title>A moving target tracking framework based on a set and its topological space</title><title>IEEE access</title><addtitle>Access</addtitle><description>Moving target tracking is a technology that matches frames and images based on target characteristics. This technology is widely utilized in intelligent transportation, logistics transportation, public security, sports event broadcasting, and other fields. Existing research focuses primarily on improving target detection and tracking algorithms to improve target retrieval and tracking efficiency. However, the majority of studies focus on global and full-range retrieval. More importantly, in large video scenes with multiple camera collaborations, these methods rarely consider the efficiency of target retrieval and tracking. Based on relevant theories and methods of video GIS, set theory, and topology, in this paper, a set and its topology space covering road networks, cameras, videos, and key frames were constructed. Additionally, the positioning, tracking, and track representation of a moving target based on the set and its topology space were solved. Compared to the feature vector algorithm, video summarization and Meanshift algorithm, the experimental findings reveal that the target retrieval performance, algorithm stability, and robustness are improved.</description><subject>Algorithms</subject><subject>Camera network</subject><subject>Cameras</subject><subject>Frames (data processing)</subject><subject>Moving target tracking</subject><subject>Moving targets</subject><subject>Network topology</subject><subject>Particle filters</subject><subject>Retrieval</subject><subject>Road traffic</subject><subject>Roads</subject><subject>Set theory</subject><subject>Target detection</subject><subject>Target tracking</subject><subject>Topological space</subject><subject>Topology</subject><subject>Tracking</subject><subject>Trajectory</subject><subject>Transportation networks</subject><subject>Video data</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1LAzEQXUTBov0Fegh4bk0ym2xyLKVqUfBQPYdsMinbr9Rkq_jv3boincvMPN57M_CK4obRMWNU30-m09liMeaUwxi45FqXZ8WAM6lHIECen8yXxTDnFe1KdZCoBsXzhGzjZ7NbktamJbakTdatj3tIdotfMa1JbTN6EnfEktwx7M6Tps2kjfu4icvG2Q3Je-vwurgIdpNx-NeviveH2dv0afTy-jifTl5GDoRuR64GWXPNmVUVrb1wCIF7WaHyHkrUQUDNglNVAI6lAmGrwLRkXpac1RWDq2Le-_poV2afmq1N3ybaxvwCMS2NTW3jNmi8kFzVXgVBsdSO14IrxcB7wYA6hp3XXe-1T_HjgLk1q3hIu-59wytdAS01Vx0LepZLMeeE4f8qo-YYgulDMMcQzF8Ineq2VzWIeKKgSgoK8AN0-YG8</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Zeng, Weibo</creator><creator>Min, Xinran</creator><creator>Deng, Qiuyan</creator><creator>Zhao, Xingyue</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9035-7836</orcidid><orcidid>https://orcid.org/0009-0007-8054-8840</orcidid><orcidid>https://orcid.org/0000-0001-8746-3531</orcidid><orcidid>https://orcid.org/0009-0004-0369-5546</orcidid></search><sort><creationdate>20230101</creationdate><title>A moving target tracking framework based on a set and its topological space</title><author>Zeng, Weibo ; Min, Xinran ; Deng, Qiuyan ; Zhao, Xingyue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-cb36b2921a870bd5ce3f2d67e8dd34e9f53b1fc87f32e4835a7f1961d6421b713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Camera network</topic><topic>Cameras</topic><topic>Frames (data processing)</topic><topic>Moving target tracking</topic><topic>Moving targets</topic><topic>Network topology</topic><topic>Particle filters</topic><topic>Retrieval</topic><topic>Road traffic</topic><topic>Roads</topic><topic>Set theory</topic><topic>Target detection</topic><topic>Target tracking</topic><topic>Topological space</topic><topic>Topology</topic><topic>Tracking</topic><topic>Trajectory</topic><topic>Transportation networks</topic><topic>Video data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zeng, Weibo</creatorcontrib><creatorcontrib>Min, Xinran</creatorcontrib><creatorcontrib>Deng, Qiuyan</creatorcontrib><creatorcontrib>Zhao, Xingyue</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zeng, Weibo</au><au>Min, Xinran</au><au>Deng, Qiuyan</au><au>Zhao, Xingyue</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A moving target tracking framework based on a set and its topological space</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>11</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Moving target tracking is a technology that matches frames and images based on target characteristics. This technology is widely utilized in intelligent transportation, logistics transportation, public security, sports event broadcasting, and other fields. Existing research focuses primarily on improving target detection and tracking algorithms to improve target retrieval and tracking efficiency. However, the majority of studies focus on global and full-range retrieval. More importantly, in large video scenes with multiple camera collaborations, these methods rarely consider the efficiency of target retrieval and tracking. Based on relevant theories and methods of video GIS, set theory, and topology, in this paper, a set and its topology space covering road networks, cameras, videos, and key frames were constructed. Additionally, the positioning, tracking, and track representation of a moving target based on the set and its topology space were solved. Compared to the feature vector algorithm, video summarization and Meanshift algorithm, the experimental findings reveal that the target retrieval performance, algorithm stability, and robustness are improved.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3262994</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-9035-7836</orcidid><orcidid>https://orcid.org/0009-0007-8054-8840</orcidid><orcidid>https://orcid.org/0000-0001-8746-3531</orcidid><orcidid>https://orcid.org/0009-0004-0369-5546</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2023-01, Vol.11, p.1-1
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2797304928
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Algorithms
Camera network
Cameras
Frames (data processing)
Moving target tracking
Moving targets
Network topology
Particle filters
Retrieval
Road traffic
Roads
Set theory
Target detection
Target tracking
Topological space
Topology
Tracking
Trajectory
Transportation networks
Video data
title A moving target tracking framework based on a set and its topological space
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T13%3A23%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20moving%20target%20tracking%20framework%20based%20on%20a%20set%20and%20its%20topological%20space&rft.jtitle=IEEE%20access&rft.au=Zeng,%20Weibo&rft.date=2023-01-01&rft.volume=11&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3262994&rft_dat=%3Cproquest_doaj_%3E2797304928%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2797304928&rft_id=info:pmid/&rft_ieee_id=10086503&rft_doaj_id=oai_doaj_org_article_d5628bd8f50e49c2b528813dd5130c1e&rfr_iscdi=true