A moving target tracking framework based on a set and its topological space
Moving target tracking is a technology that matches frames and images based on target characteristics. This technology is widely utilized in intelligent transportation, logistics transportation, public security, sports event broadcasting, and other fields. Existing research focuses primarily on impr...
Gespeichert in:
Veröffentlicht in: | IEEE access 2023-01, Vol.11, p.1-1 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE access |
container_volume | 11 |
creator | Zeng, Weibo Min, Xinran Deng, Qiuyan Zhao, Xingyue |
description | Moving target tracking is a technology that matches frames and images based on target characteristics. This technology is widely utilized in intelligent transportation, logistics transportation, public security, sports event broadcasting, and other fields. Existing research focuses primarily on improving target detection and tracking algorithms to improve target retrieval and tracking efficiency. However, the majority of studies focus on global and full-range retrieval. More importantly, in large video scenes with multiple camera collaborations, these methods rarely consider the efficiency of target retrieval and tracking. Based on relevant theories and methods of video GIS, set theory, and topology, in this paper, a set and its topology space covering road networks, cameras, videos, and key frames were constructed. Additionally, the positioning, tracking, and track representation of a moving target based on the set and its topology space were solved. Compared to the feature vector algorithm, video summarization and Meanshift algorithm, the experimental findings reveal that the target retrieval performance, algorithm stability, and robustness are improved. |
doi_str_mv | 10.1109/ACCESS.2023.3262994 |
format | Article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2797304928</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10086503</ieee_id><doaj_id>oai_doaj_org_article_d5628bd8f50e49c2b528813dd5130c1e</doaj_id><sourcerecordid>2797304928</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-cb36b2921a870bd5ce3f2d67e8dd34e9f53b1fc87f32e4835a7f1961d6421b713</originalsourceid><addsrcrecordid>eNpNUU1LAzEQXUTBov0Fegh4bk0ym2xyLKVqUfBQPYdsMinbr9Rkq_jv3boincvMPN57M_CK4obRMWNU30-m09liMeaUwxi45FqXZ8WAM6lHIECen8yXxTDnFe1KdZCoBsXzhGzjZ7NbktamJbakTdatj3tIdotfMa1JbTN6EnfEktwx7M6Tps2kjfu4icvG2Q3Je-vwurgIdpNx-NeviveH2dv0afTy-jifTl5GDoRuR64GWXPNmVUVrb1wCIF7WaHyHkrUQUDNglNVAI6lAmGrwLRkXpac1RWDq2Le-_poV2afmq1N3ybaxvwCMS2NTW3jNmi8kFzVXgVBsdSO14IrxcB7wYA6hp3XXe-1T_HjgLk1q3hIu-59wytdAS01Vx0LepZLMeeE4f8qo-YYgulDMMcQzF8Ineq2VzWIeKKgSgoK8AN0-YG8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2797304928</pqid></control><display><type>article</type><title>A moving target tracking framework based on a set and its topological space</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Zeng, Weibo ; Min, Xinran ; Deng, Qiuyan ; Zhao, Xingyue</creator><creatorcontrib>Zeng, Weibo ; Min, Xinran ; Deng, Qiuyan ; Zhao, Xingyue</creatorcontrib><description>Moving target tracking is a technology that matches frames and images based on target characteristics. This technology is widely utilized in intelligent transportation, logistics transportation, public security, sports event broadcasting, and other fields. Existing research focuses primarily on improving target detection and tracking algorithms to improve target retrieval and tracking efficiency. However, the majority of studies focus on global and full-range retrieval. More importantly, in large video scenes with multiple camera collaborations, these methods rarely consider the efficiency of target retrieval and tracking. Based on relevant theories and methods of video GIS, set theory, and topology, in this paper, a set and its topology space covering road networks, cameras, videos, and key frames were constructed. Additionally, the positioning, tracking, and track representation of a moving target based on the set and its topology space were solved. Compared to the feature vector algorithm, video summarization and Meanshift algorithm, the experimental findings reveal that the target retrieval performance, algorithm stability, and robustness are improved.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3262994</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Camera network ; Cameras ; Frames (data processing) ; Moving target tracking ; Moving targets ; Network topology ; Particle filters ; Retrieval ; Road traffic ; Roads ; Set theory ; Target detection ; Target tracking ; Topological space ; Topology ; Tracking ; Trajectory ; Transportation networks ; Video data</subject><ispartof>IEEE access, 2023-01, Vol.11, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-cb36b2921a870bd5ce3f2d67e8dd34e9f53b1fc87f32e4835a7f1961d6421b713</cites><orcidid>0000-0001-9035-7836 ; 0009-0007-8054-8840 ; 0000-0001-8746-3531 ; 0009-0004-0369-5546</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10086503$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,27610,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Zeng, Weibo</creatorcontrib><creatorcontrib>Min, Xinran</creatorcontrib><creatorcontrib>Deng, Qiuyan</creatorcontrib><creatorcontrib>Zhao, Xingyue</creatorcontrib><title>A moving target tracking framework based on a set and its topological space</title><title>IEEE access</title><addtitle>Access</addtitle><description>Moving target tracking is a technology that matches frames and images based on target characteristics. This technology is widely utilized in intelligent transportation, logistics transportation, public security, sports event broadcasting, and other fields. Existing research focuses primarily on improving target detection and tracking algorithms to improve target retrieval and tracking efficiency. However, the majority of studies focus on global and full-range retrieval. More importantly, in large video scenes with multiple camera collaborations, these methods rarely consider the efficiency of target retrieval and tracking. Based on relevant theories and methods of video GIS, set theory, and topology, in this paper, a set and its topology space covering road networks, cameras, videos, and key frames were constructed. Additionally, the positioning, tracking, and track representation of a moving target based on the set and its topology space were solved. Compared to the feature vector algorithm, video summarization and Meanshift algorithm, the experimental findings reveal that the target retrieval performance, algorithm stability, and robustness are improved.</description><subject>Algorithms</subject><subject>Camera network</subject><subject>Cameras</subject><subject>Frames (data processing)</subject><subject>Moving target tracking</subject><subject>Moving targets</subject><subject>Network topology</subject><subject>Particle filters</subject><subject>Retrieval</subject><subject>Road traffic</subject><subject>Roads</subject><subject>Set theory</subject><subject>Target detection</subject><subject>Target tracking</subject><subject>Topological space</subject><subject>Topology</subject><subject>Tracking</subject><subject>Trajectory</subject><subject>Transportation networks</subject><subject>Video data</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1LAzEQXUTBov0Fegh4bk0ym2xyLKVqUfBQPYdsMinbr9Rkq_jv3boincvMPN57M_CK4obRMWNU30-m09liMeaUwxi45FqXZ8WAM6lHIECen8yXxTDnFe1KdZCoBsXzhGzjZ7NbktamJbakTdatj3tIdotfMa1JbTN6EnfEktwx7M6Tps2kjfu4icvG2Q3Je-vwurgIdpNx-NeviveH2dv0afTy-jifTl5GDoRuR64GWXPNmVUVrb1wCIF7WaHyHkrUQUDNglNVAI6lAmGrwLRkXpac1RWDq2Le-_poV2afmq1N3ybaxvwCMS2NTW3jNmi8kFzVXgVBsdSO14IrxcB7wYA6hp3XXe-1T_HjgLk1q3hIu-59wytdAS01Vx0LepZLMeeE4f8qo-YYgulDMMcQzF8Ineq2VzWIeKKgSgoK8AN0-YG8</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Zeng, Weibo</creator><creator>Min, Xinran</creator><creator>Deng, Qiuyan</creator><creator>Zhao, Xingyue</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9035-7836</orcidid><orcidid>https://orcid.org/0009-0007-8054-8840</orcidid><orcidid>https://orcid.org/0000-0001-8746-3531</orcidid><orcidid>https://orcid.org/0009-0004-0369-5546</orcidid></search><sort><creationdate>20230101</creationdate><title>A moving target tracking framework based on a set and its topological space</title><author>Zeng, Weibo ; Min, Xinran ; Deng, Qiuyan ; Zhao, Xingyue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-cb36b2921a870bd5ce3f2d67e8dd34e9f53b1fc87f32e4835a7f1961d6421b713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Camera network</topic><topic>Cameras</topic><topic>Frames (data processing)</topic><topic>Moving target tracking</topic><topic>Moving targets</topic><topic>Network topology</topic><topic>Particle filters</topic><topic>Retrieval</topic><topic>Road traffic</topic><topic>Roads</topic><topic>Set theory</topic><topic>Target detection</topic><topic>Target tracking</topic><topic>Topological space</topic><topic>Topology</topic><topic>Tracking</topic><topic>Trajectory</topic><topic>Transportation networks</topic><topic>Video data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zeng, Weibo</creatorcontrib><creatorcontrib>Min, Xinran</creatorcontrib><creatorcontrib>Deng, Qiuyan</creatorcontrib><creatorcontrib>Zhao, Xingyue</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zeng, Weibo</au><au>Min, Xinran</au><au>Deng, Qiuyan</au><au>Zhao, Xingyue</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A moving target tracking framework based on a set and its topological space</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>11</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Moving target tracking is a technology that matches frames and images based on target characteristics. This technology is widely utilized in intelligent transportation, logistics transportation, public security, sports event broadcasting, and other fields. Existing research focuses primarily on improving target detection and tracking algorithms to improve target retrieval and tracking efficiency. However, the majority of studies focus on global and full-range retrieval. More importantly, in large video scenes with multiple camera collaborations, these methods rarely consider the efficiency of target retrieval and tracking. Based on relevant theories and methods of video GIS, set theory, and topology, in this paper, a set and its topology space covering road networks, cameras, videos, and key frames were constructed. Additionally, the positioning, tracking, and track representation of a moving target based on the set and its topology space were solved. Compared to the feature vector algorithm, video summarization and Meanshift algorithm, the experimental findings reveal that the target retrieval performance, algorithm stability, and robustness are improved.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3262994</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-9035-7836</orcidid><orcidid>https://orcid.org/0009-0007-8054-8840</orcidid><orcidid>https://orcid.org/0000-0001-8746-3531</orcidid><orcidid>https://orcid.org/0009-0004-0369-5546</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2023-01, Vol.11, p.1-1 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2797304928 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Algorithms Camera network Cameras Frames (data processing) Moving target tracking Moving targets Network topology Particle filters Retrieval Road traffic Roads Set theory Target detection Target tracking Topological space Topology Tracking Trajectory Transportation networks Video data |
title | A moving target tracking framework based on a set and its topological space |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T13%3A23%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20moving%20target%20tracking%20framework%20based%20on%20a%20set%20and%20its%20topological%20space&rft.jtitle=IEEE%20access&rft.au=Zeng,%20Weibo&rft.date=2023-01-01&rft.volume=11&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3262994&rft_dat=%3Cproquest_doaj_%3E2797304928%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2797304928&rft_id=info:pmid/&rft_ieee_id=10086503&rft_doaj_id=oai_doaj_org_article_d5628bd8f50e49c2b528813dd5130c1e&rfr_iscdi=true |